Cho a là số lẻ, b$$N. CMR: a và ab + 4 là số nguyên tố cùng nhau.
Cho a là số lẻ, b\(\in\)N. CMR: a và ab + 4 là số nguyên tố cùng nhau.
Cho a là STN lẻ, b là một số tự nhiên. CMR các số a và ab + 4 nguyên tố cùng nhau
Cho a là STN lẻ và b là 1 STN. CMR số a và số \(\overline{ab}\) + 4 nguyên tố cùng nhau
Gọi x \(\in\) (a; \(\overline{ab}+4\))
\(\Rightarrow\) a \(⋮\)x; (\(\overline{ab}\) + 4) \(⋮\) x
\(\Rightarrow\) \(\overline{ab}\) \(⋮\) x
\(\Rightarrow\) 4 \(⋮\) x
\(\Rightarrow\) x \(\in\left\{1;2;4\right\}\)
Do a lẻ
\(\Rightarrow\) a \(⋮̸\) 2; a \(⋮̸\) 4
\(\Rightarrow x=1\)
Vậy a và \(\overline{ab}+4\) là hai số nguyên tố cùng nhau
Gọi \(d=ƯCLN\left(a,ab+4\right)\left(d\ne0\right)\)
\(\Rightarrow\begin{cases}a⋮d\\ab+4⋮d\end{cases}\) \(\Rightarrow\begin{cases}a.b⋮d\\a.b+4⋮d\end{cases}\)
\(\Rightarrow\left(a.b+4\right)-\left(a.b\right)⋮d\Rightarrow4⋮d\)
\(\Rightarrow d\in\left\{1;2;4\right\}\)
Mà : a là STN lẻ \(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(a,ab+4\right)=1\)
Vậy a và ab + 4 là hai số nguyên tố cùng nhau .
cho a là số tự nhiên lẻ ,b là số tự nhiên cmr các số a và ab + 4 nguyên tố cùng nhau
Cho a là số lẻ, b\(\in\)N. CMR: a và ab + 4 là số nguyên tố cùng nhau.
OLM giúp em giải bài này với
Gọi ƯCLN(a,ab+4)=d
Ta có: a chia hết cho d=>ab chia hết cho d
ab+4 chia hết cho d
=>ab+4-ab chia hết cho d
=>4 chia hết cho d
=>d=Ư(4)=(1,2,4)
Lại có: a là số lẻ
Mà a chia hết cho d
=>d là số lẻ
=>d=1
=>ƯCLN(a,ab+4)=1
=>a và ab+4 là số nguyên tố cùng nhau.
cho a là số tự nhiên lẻ , b là số tự nhiên . CMR : các số a và a . b + 4 nguyên tố cùng nhau
Gọi d là ước số của a và ab+4
=> a, ab và (ab+4) chia hết cho d
=>(ab+4)-ab chia hết cho d
hay 4 chia hết cho d
=> d=1, 2, 4.
Do a là số lẻ mà a chia hết cho d nên d phải lẻ
=> d=1
Vậy a và (ab+4) là 2 số nguyên tố cùng nhau
1/ Số 11...11(n chữ số 1 )211..11(n chữ số 1 ) là hợp số hay số nguyên tố ( với n > 0 )
2/Cho a lẻ ; b chẵn. CMR a và a x b + 4 là hai số nguyên tố cùng nhau
Cho A là số tự nhiên lẻ, B là số tự nhiên
CMR: 2 số A và A.B + 4 là 2 số nguyên tố cùng nhau
Gọi d = ƯCLN(A; A.B + 4) (d thuộc N*)
=> A chia hết cho d; A.B + 4 chia hết cho d
=> A.B chia hết cho d; A.B + 4 chia hết cho d
=> (A.B + 4) - (A.B) chia hết cho d
=> A.B + 4 - A.B chia hết cho d
=> 4 chia hết cho d
=> \(d\in\left\{1;2;4\right\}\)
Mà A lẻ => d lẻ => d = 1
=> ƯCLN(A; A.B + 4) = 1
=> A và A.B + 4 là 2 số nguyên tố cùng nhau (đpcm)
Cho a , b thuộc N với a là số lẻ
Chứng minh rằng các số a và ab + 4 nguyên tố cùng nhau
Goi d la UCLN(a;ab+4)
Ta co:
+ a chia het cho d(1)
+ ab+4 chia het cho d(2)
Tu (1)=>ab chia het cho d(3)
Tu (2) va (3) =>4 chia het cho d
=>d thuoc tap hop cac uoc cua 4
ma a la stnhien le =>d le
=>d=1
=>a va ab+4 nguyen to cung nhau