Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Cẩm Tú
Xem chi tiết
ミ★ήɠọς τɾίếτ★彡
8 tháng 7 2021 lúc 14:37

a.

\(y=\sqrt{x+2}\Rightarrow y^2=\left(\sqrt{x+2}\right)^2\)

                    \(\Rightarrow y^2=x+2\)

                    \(\Rightarrow x=y^2-2\)

thay vào A ta có:\(A=x-2\sqrt{x+2}\)

\(\Rightarrow A=y^2-2y=y^2-2y-2\)

b.

\(A=x-2\sqrt{x+2}\)

Điều kiện:x+2≥0⇔x>-2

ta có:\(A=x-2\sqrt{x+2}\)

            \(=\left(x+2\right)-2\sqrt{x+2}.1+1-3\)

            \(=\left(\sqrt{x+12}-1\right)^2-3\)

vì \(\left(\sqrt{x+2}-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(\sqrt{x+2}-1\right)^2-3\ge-3\forall x\)

vậy GTNN của A là-3

Quỳnh Lisa
8 tháng 7 2021 lúc 14:47

a/ y=\(\sqrt{x+2}\)\(y^2-2=x\)

⇒A=\(y^2-2-2y\)

b/ A=\(y^2-2y-2\)=\(\left(y^2-2y+1\right)-3\)=\(\left(y-1\right)^2-3\)≥ -3

\(A_{min}=-3\)

dấu = xảy ra khi y=1⇒x= -1

công chúa xinh đẹp
Xem chi tiết
FL.Hermit
10 tháng 8 2020 lúc 14:56

a) 

Do: \(y=\sqrt{x+2}\)

<=> \(y^2=x+2\)

<=> \(x=y^2-2\)

Khi đó: \(A=y^2-2-2y\)

Vậy \(A=y^2-2y-2\)

Khách vãng lai đã xóa
FL.Hermit
10 tháng 8 2020 lúc 14:59

b) 

\(A=y^2-2y-2\left(cmt\right)\)

\(A=\left(y^2-2y+1\right)-3\)

\(A=\left(y-1\right)^2-3\)

Do \(\left(y-1\right)^2\ge0\forall y\)

=> \(\left(y-1\right)^2-3\ge-3\)

=> \(A\ge-3\)

Vậy A MIN = -3 <=> \(\left(y-1\right)^2=0\)

<=> \(y=1\)

Do: \(y=\sqrt{x+2}\)

<=> \(\sqrt{x+2}=1\)

<=> \(x+2=1\)

<=> \(x=-1\)

Khách vãng lai đã xóa
Đệ Ngô
Xem chi tiết

a, Ta có y2=x+2

=> A= y2-2-2y

b, A=y2-2y-2=(y2-2y+1)-3=(y-1)2-3\(\ge\)-3

Dấu "=" xảy ra khi y=1=> \(\sqrt{x+2}=1\Leftrightarrow x=-1\)

Vậy min A=-3 khi x=-1

Đệ Ngô
8 tháng 6 2019 lúc 16:39

khi x=1 chứ bạn

Lê Thụy Sĩ
Xem chi tiết
thu trang
Xem chi tiết
IS
29 tháng 6 2020 lúc 15:31

 \(t=\sqrt{2x-3}=>\frac{t^2+3}{2}=x\)

\(=>P=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}=\frac{\left(t-2\right)^2-1}{2}=\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\)

ta có \(\frac{\left(t-2\right)^2}{2}\ge0\left(\forall t\right)\)

\(=>\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\ge-\frac{1}{2}\left(\forall t\right)\)

minP=-1/2

dấu = xảy ra khi x=7/2

Khách vãng lai đã xóa
Nguyễn Linh Chi
29 tháng 6 2020 lúc 15:32

a) \(t=\sqrt{2x-3}\ge0\)

<=> \(t^2=2x-3\)

<=> \(x=\frac{t^2+3}{2}\)

=> \(P=\frac{t^2+3}{2}-2t\)

b) khi đó: \(P=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}=\frac{\left(t-2\right)^2-1}{2}\ge-\frac{1}{2}\)

Dấu "=" xảy ra <=> t = 2  khi đó: x = 7/2

Khách vãng lai đã xóa
kietdvjjj
Xem chi tiết
Bùi Võ Đức Trọng
20 tháng 7 2021 lúc 9:32

a) undefined

Bùi Võ Đức Trọng
20 tháng 7 2021 lúc 9:36

b) 

https://hoc24.vn/cau-hoi/c-voi-a-b-c-la-cac-so-duong-thoa-man-dieu-kien-a-b-c-2-tim-max-q-sqrt2abcsqrt2bcasqrt2cab.8298826302

Bạn có thể tham khảo ở đây. Đừng quên like giúp mik nha bạn. Thx

Rob Lucy
Xem chi tiết
phamthiminhanh
Xem chi tiết
pham ba linh
Xem chi tiết
dokhanhvan_123
17 tháng 10 2020 lúc 20:40

\(hcmuop\underrightarrow{jjjjjjjjj}me\)

Khách vãng lai đã xóa
gfdzdfa
Xem chi tiết