Cho tam giác MNP các đường cao NH và PK
a,Chứng minh 4 điểm N,K,H,P cùng thuộc 1 đường tròn
b,Chứng minh HK<NP
Cho tam giác ABC có BM và CN là các đường cao, gọi BM và CN cắt nhau tại H.
a/ Chứng minh AH ⊥ BC tại K.
b/ Chứng minh bốn điểm A, N, H M cùng thuộc đường tròn, xác định tâm I của đường tròn.
c/ Chứng minh bốn điểm B, N, M, C cùng thuộc đường tròn, xác định tâm O của đường tròn.
d/ Chứng minh MI ⊥ MO.
giúp em bài này vời ạ
b: Xét tứ giác ANHM có
\(\widehat{ANH}+\widehat{AMH}=180^0\)
Do đó: ANHM là tứ giác nội tiếp
hay A,N,H,M cùng thuộc 1 đường tròn
Cho tam giác ABC, các đường cao BH và CK. Chứng minh rằng :
a) Bốn điểm B, C, H, K cùng thuộc một đường tròn
b) HK < BC
Cho tam giác MNP , các đường cao MH,NK cắt nhau tại I Chứng minh:M,K,H,N thuộc 1 đường tròn Chứng minh: P,K,I,H thuộc 1 đường tròn
Xét tứ giác MKHN có
\(\widehat{MKN}=\widehat{MHN}=90^0\)
Do đó: MKHN là tứ giác nội tiếp
Cho tam giác ABC, hai đường cao BH, CK. Chứng minh:
a) 4 điểm B, K, H, C cùng thuộc 1 đường tròn
b) BK giao với CK tại I. Chứng minh 4 điểm A, H, I, K thuộc cùng 1 đường tròn
1. Tam giác ABC vuông tại A. D thuộc AB, E thuộc AC, M,N,P,Q lần lượt là trung điểm DE, DC, BC, BE. Chứng minh M, N, P, Q thuộc 1 đường tròn.
2. Tam giác ABC đường cao BH, CK. Chứng minh
a) 4 điểm B, C, H, K thuộc 1 đường tròn
b) HK < BC
3. Cho đường tròn tâm O đường kính AB. CD cắt AB tại I. H, K là chân đường vuông góc kẻ từ A, B đến CD. Chứng minh CH = BK
Cho tam giác HIK nhọn, kẻ hai đường cao HM và KN cắt nhau tại P. Chứng minh rằng:
1) 4 điểm H, N, M, K cùng thuộc 1 đường tròn.
2) 4 điểm I, N, P, M cùng cùng thuộc 1 đường tròn.
Lời giải:
1.
Xét tứ giác $HNMK$ có $\widehat{HNK}=\widehat{HMK}=90^0$. Mà 2 góc này cùng nhìn cạnh $HK$ nên $HNMK$ là tứ giác nội tiếp.
$\Rightarrow H,N,M,K$ cùng thuộc 1 đường tròn.
2.
Xét tứ giác $INPM$ có tổng 2 góc đối nhau $\widehat{INP}+\widehat{IMP}=90^0+90^0=180^0$ nên $INPM$ là tứ giác nội tiếp.
$\Rightarrow I,N, P,M$ cùng thuộc 1 đường tròn.
Cho tam giác HIK nhọn, kẻ hai đường cao HM và KN cắt nhau tại P. Chứng minh rằng:
1) 4 điểm H, N, M, K cùng thuộc 1 đường tròn.
2) 4 điểm I, N, P, M cùng cùng thuộc 1 đường tròn.
1: Xét tứ giác HNMK có
\(\widehat{HNK}=\widehat{HMK}=90^0\)
=>HNMK là tứ giác nội tiếp đường tròn đường kính HK
=>H,N,M,K cùng thuộc 1 đường tròn
2: Xét tứ giác INPM có
\(\widehat{INP}+\widehat{IMP}=90^0+90^0=180^0\)
=>INPM là tứ giác nội tiếp
=>I,N,P,M cùng thuộc 1 đường tròn
Cho tam giác ABC đường cao BH,CK cắt nhau tại O
a) Chứng minh 4 điểm B,K,H,C cùng thuộc 1 đường tròn
b) Chứng minh 4 điểm A,K,O,H cùng thuộc 1 đường tròn
c) gọi I là trung điểm của BC . M là trung điểm AO . chứng minh MI là đường trung trực của KH