Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Phi Hùng
Xem chi tiết
Dương Lam Hàng
12 tháng 3 2018 lúc 20:04

a) \(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-3}{97}+\frac{x-4}{96}=4\)

\(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{98}-1+\frac{x-3}{97}-1+\frac{x-3}{96}-1=4-4\)

\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{98}+\frac{x-100}{97}+\frac{x-100}{96}=0\)

\(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)

\(\Rightarrow x-1=0\) ( vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\) )

Vậy x = 1

b) \(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}=3\)

\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1=3-3\)

\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=0\)

\(\Rightarrow\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\right)=0\)

Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\ne0\)

=> x + 100 = 0

=> x           = -100

c) \(\frac{x-1}{99}+\frac{x-2}{49}+\frac{x-4}{32}=6\)

\(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{49}-2+\frac{x-4}{32}-3=6-6\)

\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{49}+\frac{x-100}{32}=0\)

\(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{49}+\frac{1}{32}\right)=0\)

Vì \(\frac{1}{99}+\frac{1}{49}+\frac{1}{32}\ne0\)

=> x - 100 = 0

=> x           = 100

Chúc bạn học tốt

Phạm Khánh Linh
12 tháng 3 2018 lúc 21:02

có người khác trả lời trước rồi nên chị ko trả lời đâu nhé em trai

Minh Razer
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2023 lúc 20:22

Sửa đề: 

\(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{50}\)

đào ngọc thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2023 lúc 5:24

a: \(A=\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)

\(=\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+\dfrac{100}{100}\)

\(=100\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)=100B

=>B/A=1/100

b: \(A=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\left(1\right)\)

\(=\dfrac{50}{49}+\dfrac{50}{48}+....+\dfrac{50}{2}+\dfrac{50}{50}\)

\(=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)

\(B=\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{49}+\dfrac{2}{50}\)

\(=2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)

=>A/B=25

Bibi2211>>
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2021 lúc 14:58

Sửa đề: \(-1+3-5+7-...-97+99\)

1) Ta có: \(-1+3-5+7-...-97+99\)

\(=\left(-1+3\right)+\left(-5+7\right)+...+\left(-97+99\right)\)

\(=2+2+...+2=2\cdot50=100\)

2) Ta có: \(1+2-3-4+...+97+98-99-100\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)

\(=\left(-4\right)\cdot25=-100\)

 

Trần Như
Xem chi tiết
Nguyễn Quốc Gia Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 15:01

a: Ta có: \(\left(\dfrac{3}{2}x-\dfrac{1}{5}\right)^2\cdot\left(x^2+\dfrac{1}{2}\right)=0\)

\(\Leftrightarrow x\cdot\dfrac{3}{2}=\dfrac{1}{5}\)

hay \(x=\dfrac{1}{5}:\dfrac{3}{2}=\dfrac{2}{15}\)

b: Ta có: \(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4\)

\(\Leftrightarrow x+100=0\)

hay x=-100

Nguyễn Quốc Gia Khoa
2 tháng 10 2021 lúc 15:39

Mn nhớ giải chi tiết ra nha

Xem chi tiết
Thùy Giang
Xem chi tiết
Thuỳ Linh Nguyễn
6 tháng 3 2023 lúc 4:19

\(S=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\\ 3S=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot3\cdot4+...+3\cdot99\cdot100\\ 3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\\ 3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+....+99\cdot100\cdot101-98\cdot99\cdot100\\ 3S=99\cdot100\cdot101\\ S=\dfrac{99\cdot100\cdot101}{3}=33\cdot100\cdot101=3300\cdot101=333300\)

Nguyen Phuong Thao
Xem chi tiết
Đinh Thùy Linh
13 tháng 6 2016 lúc 12:25

a) Số số hạng: \(\frac{\left(99-1\right)}{1}+1=99\)

Tổng: \(\frac{99+1}{2}\cdot99=4950\)

b) Số số hạng: \(\frac{\left(100-2\right)}{2}+1=50\)

Tổng: \(\frac{100+2}{2}\cdot50=2550\)

c) \(S=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)

\(3\cdot S=1\cdot2\left(3-0\right)+2\cdot3\left(4-1\right)+3\cdot4\left(5-2\right)+...+99\cdot100\left(101-98\right)\)

\(3\cdot S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+99\cdot100\cdot101-98\cdot99\cdot100\)

\(3\cdot S=99\cdot100\cdot101\)

Vậy, \(S=\frac{1}{3}\cdot99\cdot100\cdot101=333300\)