Cho A=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9999}{10000}\)
Tính 200.A
Cho \(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}\).Kết quả rút gọn của 200.A là
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}=\frac{3.8.15....9999}{4.9.16....10000}=?\)
Tính A = \(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...........\frac{9999}{10000}\)
giúp mk với
\(\frac{3}{4}\)*\(\frac{8}{9}\)*\(\frac{15}{16}\)********\(\frac{9999}{10000}\)
= \(\frac{1\cdot3}{2^2}\)*\(\frac{2\cdot4}{3^2}\)********\(\frac{99\cdot101}{100^2}\)
= \(\frac{1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot99}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\)* \(\frac{3\cdot4\cdot5\cdot\cdot\cdot101}{2\cdot3\cdot4\cdot\cdot\cdot100}\)
= \(\frac{1}{100}\)*\(\frac{101}{2}\)=\(\frac{101}{200}\)
Ta có: A = \(\frac{3}{8}\). \(\frac{8}{9}\).\(\frac{15}{16}\). ... .\(\frac{9999}{10000}\)
\(\Rightarrow\) A = \(\frac{1.3}{2^2}\).\(\frac{2.4}{3^2}\). \(\frac{3.5}{4^2}\). ... . \(\frac{99.101}{100^2}\)
\(\Rightarrow\) A = \(\frac{1.111}{2.100}\)= \(\frac{111}{200}\)
Vậy: A = \(\frac{111}{200}\).
\(A=\frac{\left(1\cdot3\right)\cdot\left(2\cdot4\right)\cdot\left(3\cdot5\right)\cdot.....\cdot\left(99\cdot101\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right).......\left(100\cdot100\right)}\)
\(A=\frac{\left(1\cdot2\cdot3\cdot.....\cdot99\right)\left(3\cdot4\cdot5\cdot.....\cdot101\right)}{\left(2\cdot3\cdot4\cdot.....\cdot100\right)\left(2\cdot3\cdot4\cdot.....\cdot100\right)}\)
\(A=\frac{1\cdot101}{100\cdot2}\)
\(A=\frac{101}{200}\)
k mk nha mk nhanh nhất mk trả lời đúng 100%
Tính x=\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(x=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(x=\frac{1.3}{2.2}+\frac{2.4}{3.3}+\frac{3.5}{4.4}+...+\frac{99.101}{100.100}\)
\(x=\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}\)
\(x=\frac{1}{100}.\frac{101}{2}\)
\(x=\frac{101}{200}\)
\(X=\frac{1.3}{2.2}+\frac{2.4}{3.3}+\frac{3.5}{4.4}+...+\frac{99.101}{100.100}\)
\(X=\frac{1.2.3....99}{2.3.4....100}.\frac{3.4.5....101}{2.3.4....100}\)
\(X=\frac{1}{100}.\frac{101}{2}\)
\(X=\frac{101}{200}\)
Study well
Tính P= \(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}..........\frac{9999}{10000}\)
P=1.3/2.2 . 2.4/3.3 . 3.5/4.4 ... . 99.101/100.100
P=1.2.3....99/2.3.4...100 . 3.4.5...101/2.3.4...100
P=1/100 . 101/2
P=101/200
P = \(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)
P = \(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\)
P = \(\frac{1}{100}.\frac{101}{2}\)
P = \(\frac{101}{200}\)
Tính giá trị của A biết:
1/ \(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}...\frac{9999}{10000}\)
2/ \(A=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}...\frac{3599}{3600}\)
mọi nguời cứ tính đi đuợc câu nào tôi cũng tick cho
Chứng minh \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)không phải là số tự nhiên
Ta có :
\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)
\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99\)\(\left(1\right)\)
gọi B là biểu thức trong ngoặc
Lại có :
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B< 1-\frac{1}{100}< 1\)
\(\Rightarrow A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-\left(1-\frac{1}{100}\right)>98\)
\(\Rightarrow A>98\)\(\left(2\right)\)
từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(98< A< 99\)
vậy A không phải là số tự nhiên
phần bạn đánh dấu (1) thì A<99 vì A= 99 trừ đi một số mà
B=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}......\frac{9999}{10000}\)
Tính B
Tính \(M=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9999}{10000}\)
\(M=\frac{3}{4}.\frac{8}{9}.....\frac{9999}{10000}=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot....\cdot\frac{99\cdot101}{100\cdot100}=\frac{1\cdot3\cdot2\cdot4\cdot...\cdot99\cdot101}{2^2\cdot3^2\cdot...\cdot100^2}=\frac{1\cdot101}{2\cdot100}=\frac{101}{200}\)Vậy M = \(\frac{101}{200}\)
\(M=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{9999}{10000}\)
\(M=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{99.101}{100^2}=\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)