tìm GTNN
B=\(x^2-2x+y^2+4y+8\)
f(x)=(2x-3)^2+(x+4)^2-(3x^2+5x-2) tìm GTNN
F=2x^2+3y^2-8x+24y-7 tìm GTNN
F=-5x^2-4y^2+20x-32y+9 tìm GTLN
F=x^2+y^2-x+y-3 tìm GTNN
F=F=5x^2+y^2-4xy-6x+20 tìm GTNN
F=-13x^2-4y^2+12xy+20x+37
F=5x^2+9y^2-12xy+24x-48y+100
Cho x+y=5 Cho A= x^3+y^3-8(x^2+y^2)+xy+2 tính GTLN của A
Cho x+y+2=0 Tìm min của B=2(x^3+y^3)-15xy+7
Cho x+y+2=0 tìm min của C=x^4+y^4-(x^3+y^3)+2x^2y^2+2xy(x^2+y^2)+13xy
\(A=x-2y+3z\left(x,y,z>0\right)\)
\(\left\{{}\begin{matrix}2x+4x+3z=8\left(1\right)\\3x+y-3z=2\left(2\right)\end{matrix}\right.\)
(1) <=> \(5x+5y=10\) <=> x+ y = 2
=> y = 2-x
Từ (1) => \(2x+4\left(2-x\right)+3z=8\)
=> -2x +3z =0
=> \(x=\dfrac{3}{2}z\) => \(z=\dfrac{2}{3}x\) thay vào A
=> \(A=x-2\left(2-x\right)+3.\dfrac{2}{3}x=5x-4\ge-4\)
Vậy Amin = -4.
tìm gtnn , gtln a/ A=5-8-x^2
b/ b=5-x^2+2x-4y^2-4y
Ta có : \(A=5-8x-x^2\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\)
Vì \(-\left(x+4\right)^2\le0\forall x\in R\)
Nên : \(-\left(x+4\right)^2+21\ge21\forall x\in R\)
Vậy : \(A_{min}=21\) khi x = -4
bài 1 : tìm x,y sao cho :
A=2x^2 +9y^2-6xy-6x-12y+2014 đạt gtnn ?
B= -x^2+2xy-4y^2+2x+10y-8 đạt gtln ?
bài 2 : tìm các số nguyên x,y không nhỏ hơn 2 soa cho xy-1 chia hết cho (x-1)(y-1)
kí hiệu a l b là a chia hết cho b nhé
xy-1 l (x-1)(y-1) <=> xy-1 l y-1 <=> y(x-1)+y-1 l y-1 => x-1 l y-1
tương tự : y-1 l x-1
=> \(\orbr{\begin{cases}x-1=y-1\\x-1=1-y\end{cases}}\Rightarrow\orbr{\begin{cases}x=y\\x+y=2\end{cases}}\)
+> x=y \(\Rightarrow x^2-1\)l \(\left(x-1\right)^2\) <=> x+1 l x-1 <=> 2 l x-1 => x=2 hoặc x=3
|+> x+y=2 thay vào tương tự như trên nhé
Tìm GTNN
a) B=x^2+y^2-x+4y+10
b) C=2x^2-6x
\(B=x^2+y^2-x+4y+10\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+4y+4\right)+\frac{23}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+2\right)^2+\frac{23}{4}\ge\frac{23}{4}\forall x\)
=> Min B = 23/4 tại \(\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}\)
\(C=2x^2-6x\)
\(=2x^2-6x+\frac{9}{2}-\frac{9}{2}\)
\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\forall x\)
=> Min C = -9/2 tại \(x=\frac{3}{2}\)
1.Tìm GTNN của
E=x2-2x+y^2+4y+8
2.Phân tích đa thức thành nhân tử x3-2x2+2x-13
bài 1:x2-2x+y2+4y+8=x2-2x+1+y2+4y+4+3=(x-1)2+(y+2)2+3>=3
maxE=3<=>X=1;y=-2
Tìm GTNN: H=x^2-2x+y^2-4y+7
\(H=x^2-2x+y^2-4y+7=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)
\(minH=2\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Tìm GTNN của P= x^2-2xy+4y^2-2x-10+8
\(P=\) \(x^2-2xy+4y^2-2x-10+8\)
\(=x^2-2xy+4y^2-2x-2\)
\(=x^2-2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+4y^2-2\)
\(=\left(x-y-1\right)^2-y^2-2y-1+4y^2-2\)
\(=\left(x-y-1\right)^2+3y^2-2y-3\)
\(=\left(x-y-1\right)^2+3\left(y^2-\frac{2}{3}y-1\right)\)
\(=\left(x-y-1\right)^2+3\left(y^2-2y\frac{1}{3}+\frac{1}{9}-\frac{10}{9}\right)\)
\(=\left(x-y-1\right)^2+3\left(y-\frac{1}{3}\right)^2-\frac{10}{3}\)
\(\Rightarrow P\ge\frac{-10}{3}\)
Dấu ''='' xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-\frac{1}{3}=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-y=1\\y=\frac{1}{3}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1+\frac{1}{3}=\frac{4}{3}\\y=\frac{1}{3}\end{cases}}\)
Vậy giá trị nhỏ nhất của P là \(\frac{-10}{3}\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{1}{3}\end{cases}}\)
Tìm GTNN, GTLN (nếu có) của các biểu thức sau:
a) A = 5 - x^2 + 2x - 4y^2 - 4y
b) B = x^2 - 2x + y^2 - 4y + 7
c) C = x^2 - 4xy + 5y^2 + 10x - 22y + 28
d) D = (x-1) (x+2) (x+3) (x+6)