tập nghiệm phương trình căn của 4x+1=giá trị tuyệt đối của x-5
tìm nghiệm của phương trình chứa dấu giá trị tuyệt đối:
//4x-1/-3/ -/x-5/ =1
giẢI CÁC phương trình sau:
a)giá trị tuyệt đối của 3x=x+8
b)giá trịh tuyệt đối của -2x=4x+18
c)giá trị tuyệt đối của x-5=3x
d)giá trị tuyệt đối của x+2=2x-10
Cho A là tập hợp tất cả các nghiệm của phương trình x 2 − 4 x + 3 = 0 ; B là tập hợp các số có giá trị tuyệt đối nhỏ hơn 4. Khẳng định nào sau đây đúng?
A. A ∪ B = A
B. A ∩ B = A ∪ B
C. A \ B = ∅
D. B \ A = ∅
1.Tìm nghiệm nguyên dương của phương trình x+y+z=xyz
2.tìm giá trị nhỏ nhất của biểu thức A=giá trị tuyệt đối của 2x+2 cộng với giá trị tuyệt đối của 2x-2013
Không làm mất tính tổng quát, giả sử \(0< x\le y\le z\)
=> \(x+y+z\le3z\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)
Mà x;y;z là các số nguyên dương => \(xy\in\left\{1;2;3\right\}\)
Ta xét các trường hợp:
TH1: \(xy=1\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow2+z=z\Leftrightarrow2=0\) (vô lý!)
TH2: \(xy=2\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\Leftrightarrow z=3\) (thỏa mãn)
TH3: \(xy=3\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\Leftrightarrow z=2\) (thỏa mãn)
Vậy (x;y;z) là các hoán vị của (1;2;3)
\(A=\left|2x+2\right|+\left|2x-2013\right|=\left|2x+2\right|+\left|2013-2x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)với \(ab\ge0\)
=>\(A=\left|2x+2\right|+\left|2013-2x\right|\ge\left|2x+2+2013-2x\right|=2015\)
với \(\left(2x+2\right)\left(2013-2x\right)\ge0\)
=>\(A_{min}=2015\) với \(-0,5\le x\le1006,5\)
cho phương trình : \(2x^2-\left(m+3\right)x+m=0\) (1)
a, chứng tỏ phương trình (1) có nghiệm với mọi giá trị của m
b, gọi \(x_1,x_2\) là các nghiệm của phương trình (1).Tìm giá trị nhỏ nhất của biểu thức sau A= trị tuyệt đối của \(x_1-x_2\)
a: \(\text{Δ}=\left[-\left(m+3\right)\right]^2-4\cdot2\cdot m\)
\(=\left(m+3\right)^2-8m\)
\(=m^2-2m+9=\left(m-1\right)^2+8>0\forall m\)
=>Phương trình (1) luôn có hai nghiệm phân biệt
b: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{m+3}{2}\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m}{2}\end{matrix}\right.\)
\(A=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{\dfrac{1}{4}\left(m+3\right)^2-4\cdot\dfrac{m}{2}}\)
\(=\sqrt{\dfrac{1}{4}\left(m^2+6m+9\right)-2m}\)
\(=\sqrt{\dfrac{1}{4}m^2+\dfrac{3}{2}m+\dfrac{9}{4}-2m}\)
\(=\sqrt{\dfrac{1}{4}m^2-\dfrac{1}{2}m+\dfrac{9}{4}}\)
\(=\sqrt{\dfrac{1}{4}\left(m^2-2m+9\right)}\)
\(=\sqrt{\dfrac{1}{4}\left(m^2-2m+1+8\right)}\)
\(=\sqrt{\dfrac{1}{4}\left(m-1\right)^2+2}>=\sqrt{2}\)
Dấu '=' xảy ra khi m-1=0
=>m=1
tìm x
a, giá trị tuyệt đối của tổng 3x+4= 2 nhân giá trị tuyệt đối của hiệu 2x-9
b, 8x- giá trị tuyệt đối của tổng 4x+1= x+2
c, giá trị tuyệt đối của hiệu 17x-5- giá trị tuyệt đối của hiệu 17x+5=0
d, giá trị tuyệt đối của hiệu x-1=2x-5
Giá trị tuyệt đối hiệu 2 nghiệm của phương trình x 2 +2x-5=0 bằng:
A.2 6
B.2 + 2 6
C.2
D.0
Chọn đáp án A
x 2 + 2x - 5 = 0 phương trình có ac < 0 ⇒ phương trình có 2 nghiệm phân biệt
Theo định lí Vi-et ta có:
cho phương trình x2 - 2<m-1>x +m-5 bằng 0
tìm m để x1 x2 là 2 nghiệm của phương trình . Tìm m để thỏa mãn biểu thức p bằngtrị tuyệt đối của x1-x2 đạt giá trị nhỏ nhất
\(x^2-2\left(m-1\right)x+m-5=0\)
Xét \(\Delta=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)\(=\left(2x-3\right)^2+15>0\forall m\)
=>Pt luôn có hai nghiệm pb
Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)
Đặt \(A=\left|x_1-x_2\right|\)
\(\Rightarrow A^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)
\(=\left(2m-3\right)^2+15\ge15\)
\(\Rightarrow A\ge\sqrt{15}\)
\(A_{min}=\sqrt{15}\Leftrightarrow m=\dfrac{3}{2}\)
1GIẢI hệ phương trình căn x + trị tuyệt đối của y+1 = 5 và x*(y bình phương + 2y +1)=36