giải hệ phương trình:
⎧3xy=4(x+y)
⎨5yz=6(y+z)
⎩7zx=8(z+x)
1. Giải hệ phương trình: \(\hept{\begin{cases}3xy=4\left(x+y\right)\\5yz=6\left(y+z\right)\\7zx=8\left(z+x\right)\end{cases}}\)
TH1: x=0
TH2: x khác 0 thì y,z khác 0
VT là bậc hai theo 2 biến, VP là bậc nhất theo các biến tương ứng. Do đó chia pt cho 2 biến tương ứng theo VT. cụ thể pt đầu chia cho xy, pt 2 chia cho yz, pt 3 chia cho zx
ta quy về đươc pt 3 ẩn giải được
còn lại em tự giải nhé
giải hệ phương trình:\(\left\{{}\begin{matrix}3xy=4\left(x+y\right)\\5yz=6\left(y+z\right)\\7zx=8\left(z+x\right)\end{matrix}\right.\)
Giải các hệ phương trình sau:
a)\(\begin{cases}x^3+y^3=1\\x^5+y^5=x^2+y^2\end{cases}\)
b)\(\begin{cases}3xy=4\left(x+y\right)\\5yz=6\left(y+z\right)\\7zx=8\left(z+x\right)\end{cases}\)
Giải các hệ phương trình sau:
a)\(\int^{x^3+y^3=1}_{x^5+y^5=x^2+y^2}\)
b)\(\int^{3xy=4\left(x+y\right)}_{^{5yz=6\left(y+z\right)}_{7zx=8.\left(z+x\right)}}\)
ê cu bài phần a nè
(2)<=>X2(1-X3)+y2(1-y3)=0 (3)
từ (1) => 1-x3=y3;1-y3=x3
thay vào (3)ta được :x2.y3+y2.x3=0
<=>x2.y2.(x+y)=0 (tới đây tự lo liệu)
giải hệ pt
\(3xy=4\left(x+y\right)\)
\(5yz=6\left(y+z\right)\)
\(7zx=8\left(z+x\right)\)
trong các giá trị x,y hoặc z bằng 0 thì bạn dễ dàng suy ra hai giá trị còn lại bằng 0. Vậy x=y=z=0 là một nghiệm.
Xét trường hợp x,y,z khác 0 bạn sẽ có:
3xy=2x+2y (1*)
5yz= 6(y+z) (2*)
4xz= 3(z+x) (3*)
=>
3xyz = 2xz + 2yz (4*)
5xyz = 6xy + 6xz (5*)
4xyz = 3yz + 3xy (6*)
3 x (4*)–(5*) => bạn sẽ có 4xyz=6yz–6xy
Thế 4xyz=6yz–6xy vào (6*) bạn sẽ có:
=>6yz–6xy = 3yz + 3xy
hay 3yz=9xy =>z=3x (7*)
2x(6*)–(5*) => 3xyz=6yz – 6xz
Thế vào 3xyz=6yz – 6xz (4*)
=>6yz–6xz=2xz+2yz
=>4yz=8xz
=> y= 2x (8*)
Thay y=2x vào (1*) => 6x²=6x => x=1. => y=2; z=3.
suy ra hệ sẽ có hai nghiệm là:
x=y=z=0 và x=1; y=2; z=3.
Giải hệ phương trình:
\(\hept{\begin{cases}3xy=2\left(x+y\right)\\5yz=6\left(y+z\right)\\4xz=3\left(x+z\right)\end{cases}}\)
Giải hệ phương trình:
3xy=2(x+y)
4xz=3(x+z)
5yz=(6x+z)
giúp mình vs nha!!!!!!!!!!
giải hệ phương trình:
a)\(\hept{\begin{cases}3xy=2\left(x+y\right)\\5yz=6\left(y-z\right)\\4xz=3\left(x+y\right)\end{cases}}\)
b)\(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\\7x-3y+2z=37\end{cases}}\)
Giải hệ pt sau:
3xy=2(x+y)
5yz=6(y+z)
4zx=3(z+x)
sau đó lại suy ra 1/x+1/y = 3/2
2 pt duoi cũng thế
sau đó bạn cộng vế vs vế của 3 pt vàota se dcHPT:1/x+1/y = 3/21/y+1/z=5/61/x+1/y+1/z=11/3sau do pn lan luot thế pt 1,2 the vao pt 3=>x=17/6;y=7/3;z=13/6