chứng minh rằng
k là số mũ
10k +8k + 6k - 9k + 7k + 5k ko chia hết cho 2
b; 2017k +2018k +2019+ có chia hết cho 2
c; 2031 mũ 1111 - 2017 mũ 2020 có chia hết cho 10
chứng minh rằng
k là số mũ
a; 10k +8k +6k -9k + 7k +5k
Số đó có dạng 7k+2, K thuộc: N.Xét (7k+2)^2=49k^2+28k+4 chia 11 dư 3 nên 49k^2+28k+1 chia hết cho 11,49k^2+28k+1=44k^2+22k+5k^2+6x+1 mà 44k^2+22k chia hết cho 11 nên 5k^2+6k+1 chia hết cho 11 mà 5k^2+6k+1=(5k+1)(k+1) nên nên 5k+11 chia hết cho 11 hoặc k+1 chia hết cho 11( giải hộ với ạ cần gấp)
Số đó có dạng 7k+2, K thuộc: N.Xét (7k+2)^2=49k^2+28k+4 chia 11 dư 3 nên 49k^2+28k+1 chia hết cho 11,49k^2+28k+1=44k^2+22k+5k^2+6x+1 mà 44k^2+22k chia hết cho 11 nên 5k^2+6k+1 chia hết cho 11 mà 5k^2+6k+1=(5k+1)(k+1) nên nên 5k+11 chia hết cho 11 hoặc k+1 chia hết cho 11( giải hộ với ạ cần gấp)
Nhân đa thức sau:
(2k + 5k + [9k : 3k] + 11k . 8k) (3k . 4k . 5k + [10k:2k:5k] 4k)
Xét đa thức trên có chia hết chia hết cho những số nào ở đây: 2,3,5,7,9,10,11
Nhân đa thức sau:
(2k + 5k + [9k : 3k] + 11k . 8k) (3k . 4k . 5k + [10k:2k:5k] 4k)
Xét đa thức trên có chia hết chia hết cho những số nào ở đây: 2,3,5,7,9,10,11
Hoàng Lê Bảo NgọcTrần Việt LinhNguyễn Huy TúNguyễn Huy ThắngSilver bulletPhương AnĐinh Tuấn ViệtNguyễn Thế BảoNguyễn Thị Anh
=(7k+3+88k)(60k^3+\(\frac{4}{k}\))
=(95k+3)(60k^3+\(\frac{4}{k}\))
phần còn lại tự lm nha
Một phân thức có dạng \(\frac{k^2-5k+8}{k^2+6k+19}\) với \(k\in N\). Chứng Minh rằng nếu tử thức (hoặc mẫu thức) chia hết cho 11 thì mẫu thức (hoặc tử thức) chia hết cho 11.
Chứng minh tử thức (hoặc mẫu thức) chia hết cho 11 thì mẫu thức (hoặc tử thức) chia hết cho 11 nghĩa là ta chứng minh nếu \(k^2-5k+8\)chia hết cho 11 thì \(k^2+6k+9\)cũng chia hết cho 11 và ngược lại.
Ta có :
\(k^2-5k+8\)chia hết cho 11
Mà \(11k\)chia hết cho 11
\(11\)chia hết cho 11
\(\Rightarrow k^2-5k+8+11k+11\)chia hết cho 11
\(\Rightarrow k^2+6k+19\)chia hết cho 11
Chứng minh ngược lại :
\(k^2+6k+19\)chia hết cho 11
Mà \(11k;11\)chia hết cho 11
\(\Rightarrow k^2+6k+19-11k-11\)chia hết cho 11
\(\Rightarrow k^2-5k+8\)chia hết cho 11
Vậy ...
Chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 thì p^2-1 chia hết cho 3.
Đáp án: Xét số nguyên tố p khi chai cho 3. Ta có: p=3k+1 hoặc p=3k+2.
Nếu p=3k+1 thì p^2-1=(3k+1)^2-1 =9k^2+6k chia hết cho 3
Nếu p=3k+12 thì p^2-1=(3k+2)^2-1=9k^2+12k chia hết cho 3
Vậy p^2-1 chia hết cho 3.
Mặc dù đã có đáp án như trên nhưng em vẫn không hiểu vì sao có 6k và 12k.
pn lớp mấy vậy
như vậy là pn phải cố hỉu ik chứ
có 6k và 12k vì khai triển hằng đẳng thức ra:
\(\left(3k+1\right)^2=9k^2+6k+1.\)
tương tự với \(\left(3k+2\right)^2=9k^2+12k+4\)
TH p=3k+2 sai:vì \(\left(3k+2\right)^2-1=9k^2+12k+3\)
+)nếu chưa học về hằng đẳng thức thì có thể nhân ra \(\left(3k+1\right)^2=\left(3k+1\right)\left(3k+1\right)=9k^2+3k+3k+1=9k^2+6k+1\)
còn nếu chưa hiểu thì có thể hiểu
3k+1 chia 3 dư 1=>\(\left(3k+1\right)^2\)chia 3 dư 1=>\(\left(3k+1\right)^2-1⋮3\)
tương tự với Th còn lại
Ta có
\(\left(3k+1\right)^2=\left(3k+1\right).\left(3k+1\right)-1\)
\(=3k.3k+3k.1+1.3k+1.1-1\)
\(=9k^2+6k+1-1=9k^2+6k\)
Cái dưới cũng tương tự nhé!
1,cho(2a+7b )chia hết cho 3(với ạ ,b thuộc số tự nhiên)chứng minh rằng (4a+2b)chia hết cho 12
2 cho,b thuộc số tự nhiên và( 11a+2b)chia hết cho 12 chứng minh rằng(a+34b) chia hết cho 12
2) Xét tổng (11a+2b)+(a+34b) =12a +36b
=> a+34b=(12a+36b)-(11a+2b)
Mà 12a+36b chia hết cho 12 ; 11a+2b chia hết cho 12
=>(12a+36b)-(11a+2b) chia hết cho 12
=>a+34b chia hết cho 12
chứng minh 5k^4+10k^3+10k^2+5k chia hết cho 30 K thuộc N*
bài này hơi rắc rối ; bạn nên sử dụng phương pháp qui nạp toán học 2 lần
với \(k=1\) ta có : \(5k^4+10k^3+10k^2+5k=30⋮3\)
giả sữ : \(k=n\) thì ta có : \(5n^4+10n^3+10n^2+5n⋮30\)
khi đó với \(k=n+1\) thì ta có :
\(5k^4+10k^3+10k^3+5k=5\left(n+1\right)^4+10\left(n+1\right)^3+10\left(n+1\right)^2+5\left(n+1\right)\)
\(=5\left(n^4+4n^3+6n^2+4n+1\right)+10\left(n^3+3n^2+3n+1\right)+10\left(n^2+2n+1\right)+5\left(n+1\right)\)
\(=5n^4+10n^3+10n^2+5n+20n^3+60n^2+70n+30\)
giờ ta chỉ cần chứng minh \(20n^3+60n^2+70n+30⋮30\) là được
với \(n=1\) ta có : \(20n^3+60n^2+70n+30=180⋮3\)
giả sữ : \(n=a\) thì ta có : \(20a^2+60a^2+70a+30⋮3\)
khi đó với \(n=a+1\) thì ta có :
\(20\left(n\right)^3+60n^2+70n+30=20\left(a+1\right)^3+60\left(a+1\right)^2+70\left(a+1\right)+30\)
\(=20\left(a^3+3a^2+3a+1\right)+60\left(a^2+2a+1\right)+70\left(a+1\right)+30\)
\(=20a^3+60a^2+70a+30+60a^2+180a+150⋮3\)
\(\Rightarrow20n^3+60n^2+70n+30⋮30\)
\(\Rightarrow5k^4+10k^3+10k^2+5k⋮30\)
vậy \(5k^4+10k^3+10k^2+5k\) chia hết cho \(30\) với \(k\in N^{\circledast}\) (đpcm)