Bài 1: Phương pháp quy nạp toán học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Asdfasdf Asdfasdf

chứng minh 5k^4+10k^3+10k^2+5k chia hết cho 30 K thuộc N*

Mysterious Person
30 tháng 6 2018 lúc 18:20

bài này hơi rắc rối ; bạn nên sử dụng phương pháp qui nạp toán học 2 lần

với \(k=1\) ta có : \(5k^4+10k^3+10k^2+5k=30⋮3\)

giả sữ : \(k=n\) thì ta có : \(5n^4+10n^3+10n^2+5n⋮30\)

khi đó với \(k=n+1\) thì ta có :

\(5k^4+10k^3+10k^3+5k=5\left(n+1\right)^4+10\left(n+1\right)^3+10\left(n+1\right)^2+5\left(n+1\right)\)

\(=5\left(n^4+4n^3+6n^2+4n+1\right)+10\left(n^3+3n^2+3n+1\right)+10\left(n^2+2n+1\right)+5\left(n+1\right)\)

\(=5n^4+10n^3+10n^2+5n+20n^3+60n^2+70n+30\)

giờ ta chỉ cần chứng minh \(20n^3+60n^2+70n+30⋮30\) là được

với \(n=1\) ta có : \(20n^3+60n^2+70n+30=180⋮3\)

giả sữ : \(n=a\) thì ta có : \(20a^2+60a^2+70a+30⋮3\)

khi đó với \(n=a+1\) thì ta có :

\(20\left(n\right)^3+60n^2+70n+30=20\left(a+1\right)^3+60\left(a+1\right)^2+70\left(a+1\right)+30\)

\(=20\left(a^3+3a^2+3a+1\right)+60\left(a^2+2a+1\right)+70\left(a+1\right)+30\)

\(=20a^3+60a^2+70a+30+60a^2+180a+150⋮3\)

\(\Rightarrow20n^3+60n^2+70n+30⋮30\)

\(\Rightarrow5k^4+10k^3+10k^2+5k⋮30\)

vậy \(5k^4+10k^3+10k^2+5k\) chia hết cho \(30\) với \(k\in N^{\circledast}\) (đpcm)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Võ Yến My
Xem chi tiết
Hảo
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hảo
Xem chi tiết
Hảo
Xem chi tiết
Giao nguyen
Xem chi tiết
Nguyễn Phúc
Xem chi tiết
Nguyễn Nam Khánh
Xem chi tiết