đề thiếu nha bn ; đề đủ là : chứng minh \(6^{2n}+10.3^n\) chia hết cho \(11\) với mọi \(n\) thuộc N* .
+ với \(n=1\) ta có : \(6^{2n}+10.3^n=6^2+10.3^1=66\) chia hết cho \(11\)
+ giả sử : khi \(n=k\) thì \(6^{2n}+10.3^n=6^{2k}+10.3^k\) chia hết cho \(11\)
ta có khi \(n=k+1\) \(\Rightarrow6^{2n}+10.3^n=6^{2\left(k+1\right)}+10.3^{k+1}\)
\(=6^2.6^{2k}+10.3^k.3=36.6^{2k}+10.3^k.36-33.10.3^k\)
\(=\left(36.\left(6^{2k}+10.3^k\right)-33.10.3^k\right)⋮11\)
\(\Rightarrow6^{2n}+10.3^n=\left(36.\left(6^{2k}+10.3^k\right)-33.10.3^k\right)⋮11\)
vậy \(6^{2n}+10.3^n\) chia hết cho \(11\) với mọi \(n\) thuộc N*