A = n⁵ - 6n =n5-n-5n
= n.(n⁴ - 1) -5n
= n.(n² + 1)(n² - 1) -5n
= n.(n² + 1)(n - 1)(n + 1)-5n
= n.(n² - 4 + 5)(n - 1)(n + 1) -5n
= n[(n-2)(n+2)+5](n - 1)(n + 1) -5n
= [n(n-2)(n+2)+5n](n - 1)(n + 1) -5n
= n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) -5n
Ta có:
+n(n-2)(n+2)(n - 1)(n + 1) chia hết cho 5
+5n(n - 1)(n + 1) chia hết cho 5
+5n chia hết chon 5
=> n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1)-5n chia hết cho 5
=> A chia hết cho 5