Cho a/b=b/c=c/a.CMR a=b=c
cho a/b=b/c=c/a.CMR a=b=c
Có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow b=a;c=b\)
\(\Rightarrow a=b=c\left(dpcm\right)\)
Thêm điều kiện : \(a+b+c\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\cdot\frac{a}{b}=1\Rightarrow a=b\)
\(\cdot\frac{b}{c}=1\Rightarrow b=c\)
\(\Rightarrow a=b=c\)
Vậy ...
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
=> ac = b2
ba = c2
bc = a2
=> b2 = c2 = a2
=> a = b = c
tíc mình nha!
cho a/b=b/c=c/a.CMR a=b=c
Áp dụng tính chất của dãy tí số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}\)
\(\begin{cases}a=b\\b=c\\c=a\end{cases}\)
Vậy a = b = c (đpcm)
Có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Thêm điều kiện : \(a+b+c\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\begin{cases}\frac{a}{b}=1\Rightarrow a=b\\\frac{b}{c}=1\Rightarrow b=c\end{cases}\)
\(\Rightarrow a=b=c\)
Vậy \(a=b=c\)
a+b+c/d=a+b+d/c=a+c+d/b=b+c+d/a.CMR a=b=c=d
Cho abc khác 1 hoặc -1 và (ab+1)/b=(bc+1)/c=(ca+1)/a.CMR: a=b=c
Ta có ; \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ac+1}{a}\Leftrightarrow a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
\(\Leftrightarrow\hept{\begin{cases}a-b=\frac{1}{c}-\frac{1}{b}\\b-c=\frac{1}{a}-\frac{1}{c}\\c-a=\frac{1}{b}-\frac{1}{a}\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=\frac{b-c}{bc}\left(1\right)\\b-c=\frac{c-a}{ac}\left(2\right)\\c-a=\frac{a-b}{ab}\left(3\right)\end{cases}}}\)
Nhân (1) , (2) , (3) theo vế được : \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{a^2b^2c^2}\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(1-\frac{1}{a^2b^2c^2}\right)=0\)
Vì \(abc\ne-1\)và \(abc\ne1\)nên \(1-\frac{1}{a^2b^2c^2}\ne0\)
Do đó : \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)
\(\Rightarrow a=b\)hoặc \(b=c\)hoặc \(c=a\)
Với a = b thay vào (1) được b = c => a = b = c
Với b = c thay vào (2) được c = a => a = b = c
Với c = a thay vào (1) được a = b => a = b = c
Vậy a = b = c . (đpcm)
bài 1: Cho a/b=c/d.CMR ac/bd=a2+c2/b2+d2
bài 2: Cho a/b=c/d.CMR a/a-b=c/c-d
bài 3: Cho a/b=b/c=c/a.CMR a=b=c
Giúp mik với.Cần lắm ai giúp đỡ với T_T
ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
dddddddddddddddddddddddddddđ
qqqqqqqqqqqqqwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
xxxxxxx
cho tam giac abc ,có A=90 ,AB =c,AC=b,BC=A.cmr a2=b2+c2+bc
Đây là định lí cosin trong tam giác có học ở lớp 10, và nó đúng cho mọi tam giác. bạn ghi thêm điều kiện ABC là tam giác nhọn, tôi nghỉ là bạn học dưới lớp 10. dù sao tôi vẫn giải theo 2 cách như sau:
*cách1:ta kí hiệu vecto AB là: vAB. ta có:
(vBC)^2=(vAC-vAB)^2 =>
BC^2=AC^2+AB^2-2*vAC*vAB
a^2=b^2+c^2-2*bc*cosA (đpcm)
trong phần trên ta dùng công thức tích vô hướng của 2 vecto:
vAC*vAB=AC*AB*cosA.
và nhớ thêm bình phương của vecto bằng bình phương độ dài.
*cách2: dựng đường cao BH, vì ABC là tam giác nhọn nên H nằm trên đoạn AC, tức là HC+AH=AC.
áp dụng định lí pitago ta có:
BC^2=BH^2+HC^2
=AB^2-AH^2+HC^2
=AB^2+(HC+AH)(HC-AH)
=AB^2+AC(HC-AH).(1)
ta có:
HC-AH=HC+AH-2AH
=AC-2AH
=AC-2*AB*cosA
thay vào (1), và thay các độ dài ta có:
a^2=c^2+b(b-2c*cosA)
=c^2+b^2-2bc*cosA.
Cho tam giac nhon ABC co AB=c,AC=b,BC=a.cmr a^2=b^2+c^2-2abcosA
Dựng đường cao BH.
Xét tam giác vuông CHB ta có .\(BC^2=BH^2+HC^2=BH^2+\left(AC-AH\right)^2\)
\(=BH^2+AH^2+AC^2-2AC.AH\)
Ta có \(AH=CB.\cos A\)
suy ra \(BC^2=BH^2+AH^2+AC^2-2AC.CB.\cos A\)
Hay \(BC^2=BA^2+AC^2-2AC.BC.\cos A\)
\(\Leftrightarrow a^2=b^2+c^2-2bc\cos A\)
cho a,b,c khác 0 tm:ay-bx/c=cx-az/b=bz-cy/a.cmr (ã+by+cz)^2=(x^2+y^2+z^2)*(a^2+b^2+c^2)
Bài 1: Cho tam giác ABC vuông tại A.CMR: \(m^2_b +m^2_c =5m^2_a\)
Bài 2: Cho tam giác ABC thỏa mãn \(\frac{a^3+b^3-c^3}{a+b-c}=c^2\). Tìm số đo của \(\widehat{C}\)
Bài 3: Nhận dạng tam giác ABC nếu \(\frac{a^3+c^3-b^3}{a+c-b}=b^2\) và \(sinA.sinC=\frac{3}{4}\)
1.
Áp dụng công thức trung tuyến:
\(m_b^2+m_c^2=\dfrac{2a^2+2c^2-b^2}{4}+\dfrac{2a^2+2b^2-c^2}{4}\)
\(=\dfrac{4a^2+b^2+c^2}{4}\)
\(=\dfrac{9a^2+b^2+c^2-5a^2}{4}\)
\(=\dfrac{9\left(b^2+c^2\right)+b^2+c^2-5a^2}{4}\)
\(=5\left(\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\right)=5m_a\)