So sánh a và b biết :
a = ( 25^10 + 10^10 ) ^25
b = ( 25^25 + 10^25 ) ^ 10
Bài 5 : so sánh a và b nếu a) a - 10 > b - 10 c) - a - 9 >= - b - 9 e) - 4a + 9 < -4b + 9 b) 25 + a > 25 + b f) - 5a - 6 2b - 5
a)
`a-10>b-10`
`<=>a-10+10>b-10+10`
`<=>a>b`
c)
`-a-9≥-b-9`
`<=>-a-9+9≥-b-9+9`
`<=>-a≥-b`
`<=>-a*(-1)/1≤-b*(-1)/1`
`<=>a≤b`
e)
`-4a+9< -4b+9`
`<=>-4a+9-9< -4b+9-9`
`<=>-4a< -4b`
`<=>-4a*(-1)/4> -4b*(-1)/4`
`<=>a>b`
b)
`25+a>25+b`
`<=>25+a-25>25+b-25`
`<=>a>b`
f)
cái giữa là dấu gì vậy ạ
\(a,a-10>b-10\)
\(\Rightarrow a-10+10>b-10+10\)
\(\Leftrightarrow a>b\)
\(b,-a-9\ge-b-9\)
\(\Rightarrow-a-9+9\ge-b-9+9\)
\(\Leftrightarrow-a\ge-b\)
\(c,-4a+9< -4b+9\)
\(\Rightarrow-4a+9-9< -4b+9-9\)
\(\Leftrightarrow a< b\)
\(d,25+a>25+b\)
\(\Rightarrow25+a-25>25+b-25\)
\(\Leftrightarrow a>b\)
Câu cuối thiếu dấu bạn ơi!
So sánh
A=\(\dfrac{25^{10}+1}{25^{10}-1}\) B=\(\dfrac{25^{10}-1}{25^{10}-3}\)
\(A=\dfrac{25^{10}+1}{25^{10}-1}=\dfrac{25^{10}-1+2}{25^{10}-1}=\dfrac{25^{10}-1}{25^{10}-1}+\dfrac{2}{25^{10}-1}=1+\dfrac{2}{25^{10}-1}\left(1\right)\)
\(B=\dfrac{25^{10}-1}{25^{10}-3}=\dfrac{25^{10}-3+2}{25^{10}-3}=\dfrac{25^{10}-3}{25^{10}-3}+\dfrac{2}{25^{10}-3}=1+\dfrac{2}{25^{10}-3}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A< B\)
Ta có : \(\dfrac{25^{10}+1}{25^{10}-1}=\dfrac{25^{10}-1+2}{25^{10}-1}=\dfrac{25^{10}-1}{25^{10}-1}+\dfrac{2}{25^{10}-1}\)\(=1+\dfrac{2}{25^{10}-1}\)
Ta có : \(\dfrac{25^{10}-1}{25^{10}-3}=\dfrac{25^{10}-3+2}{25^{10}-3}=\dfrac{25^{10}-3}{25^{10}-3}+\dfrac{2}{25^{10}-3}=1+\dfrac{2}{25^{10}-3}\)
Vì \(25^{10}-1>25^{10}-3\)
\(\Rightarrow\dfrac{2}{25^{10}-1}< \dfrac{2}{25^{10}-3}\)
\(\Rightarrow1+\dfrac{2}{25^{10}-1}< 1+\dfrac{2}{25^{10}-3}\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
So sánh : A = 25 * 33 - 10; B = 21 * 36 + 10
A =25 x 33 - 10
A = 825 - 10
A = 815
B = 21 x 36 + 10
B = 756 + 10
B = 766
Vì 815>766 => 25 x 33 - 10 > 21 x 36 + 10
Hay A>B
1.Hãy so sánh các phân số sau:
A=\(\frac{10^{24}+1}{10^{25}+1}\)
B=\(\frac{10^{25}-1}{10^{26}-1}\)
Ta có : 10A = 10^25 + 10/10^25 + 1 = 10^25 + 1 +9/10^25 + 1 = 10^25 + 1/10^25 + 1 + 9/10^25 + 1
= 1 + 9/10^25 + 1 > 1 ( 1 )
10B = 10^26 - 10/10^26 - 1 = 10^26 - 1 - 9/10^26 - 1 = 10^26 - 1/10^26 - 1 - 9/10^26 - 1
= 1 - 9/10^26 - 1 < 1 ( 2 )
Từ ( 1 ) và ( 2 ) => 1 + 9/10^25 + 1 > 1 > 1 - 9/10^26 - 1
=> 10A > 10B
=> A > B
Vậy PS A lớn hơn PS B.
Bài 1: so sánh
a) 10^30 và 2^100 b)5^40 và 620^10 c) 8^25 và 16^19
a) \(10^{30}=2^{30}.5^{30}=2^{30}.\left(5^3\right)^{10}=2^{30}.125^{10}\)
\(2^{100}=2^{30}.2^{70}=2^{30}.\left(2^7\right)^{10}=2^{30}.128^{10}\)
mà \(125^{10}< 128^{10}\)
\(\Rightarrow10^{30}< 2^{100}\)
b) \(5^{40}=\left(5^4\right)^{10}=625^{10}>620^{10}\)
\(5^{40}>620^{10}\)
c) \(8^{25}=\left(2^3\right)^{75}=2^{75}\)
\(16^{19}=\left(2^4\right)^{19}=2^{76}>2^{75}\)
\(\Rightarrow16^{19}>8^{25}\)
a,1030 và 2100
1030=(103)10=100010
2100=(210)10=102410
Vì 100010<102410 nên 1030<2100.
b,540 và 62010
540=(54)10=62510>62010
=>540>62010.
c,825 và 1619
Nhân 825 và 1619 với 4 , ta được
3225 và 6419
3225=(325)5=335544325
6419<6420=(644)5=167772165
Vì 335544325>167772165 nên 825>1619
BÀi 1 : So sánh
A=1025+1/1026+1
B =1026+1/1027+1
so sánh a và b
\(A=10^{25}+\frac{1}{10^{26}}+1=1\cdot10^{25}\)
\(B=10^{26}+\frac{1}{10^{27}}+1=1\cdot10^{26}\)
\(1\cdot10^{25}< 1\cdot10^{26}\Rightarrow A< B\)
SO SÁNH :52017 và 251008
Cho A=10101-1 /10102-1;B=10100+1/10101+1.SO SÁNH A và B
ta có :
\(25^{1008}=\left(5^2\right)^{1008}=5^{2.1008}=5^{2016}\)
mà \(5^{2017}>5^{2016}\)
\(\Rightarrow\)\(5^{2017}>\left(5^2\right)^{1008}\)
\(\Rightarrow\)\(5^{2017}>25^{1008}\)
có \(5^{2017}=\left(5^2\right)^{1008}\times5\)\(=25^{1008}\times5\)
mà \(=25^{1008}\times5\)> \(25^{1008}\)
nên \(5^{2017}>25^{1008}\)
Ta có:
\(5^{2017}>5^{2016}=\text{[}5^2\text{]}^{1008}=25^{1008}\)
Suy ra: 52017 > 251008
Ta có:
\(1-A=1-\frac{10^{101}-1}{10^{102}-1}=\frac{10^{102}-1-\text{[}10^{101}-1\text{]}}{10^{102}-1}=\frac{10^{102}-1-10^{101}+1}{10^{102}-1}\)\(=\frac{10^{102}-10^{101}}{10^{102}-1}=\frac{10^{101}\left[10-1\right]}{10^{101}\text{[}10-\frac{1}{10^{101}}\text{]}}=\frac{10-1}{10-\frac{1}{10^{101}}}=\frac{9}{10-\frac{1}{10^{101}}}\)
\(1-B=1-\frac{10^{100}+1}{10^{101}+1}=\frac{10^{101}+1-\left[10^{100}+1\right]}{10^{101}+1}=\frac{10^{101}+1-10^{100}-1}{10^{100}+1}\)
\(=\frac{10^{101}-10^{100}}{10^{101}+1}=\frac{10^{100}\left[10-1\right]}{10^{100}\text{[}10+\frac{1}{10^{100}}\text{]}}=\frac{10-1}{10+\frac{1}{10^{100}}}=\frac{9}{10+\frac{1}{10^{100}}}\)
Vì \(\frac{9}{10-\frac{1}{10^{101}}}>\frac{9}{10+\frac{1}{10^{100}}}\Rightarrow A< B\)
So sánh:
a ) 11 25 v à 2 5 b ) 26 39 v à − 24 32 c ) 5 − 8 v à − 10 − 11
Sử dụng các phương pháp so sánh đã học ( quy đồng mẫu số trung gian ...). Chú ý rút gọn phân số ( nếu cần)
a ) 11 25 > 2 5 b ) − 26 39 > − 24 32 c ) 5 − 8 < − 10 − 11
So sánh:
a) 11 25 và 2 5
b) 26 39 và - 24 32
c) 5 - 8 và - 10 - 11