1) Trong góc xOy= 60 độ điểm A nằm trong góc xOy. Vẽ điểm B đối xứng với A qua Ox. Vẽ điểm C đối xứng với A qua Oy. Tính góc BOC
Trong góc xOy = 60 độ điểm A nằm trong góc xOy. Vẽ điểm B đối xứng với A qua Ox. Vẽ điểm C đối xứng với A qua Oy. Tính góc BOC
Gọi AB giao Ox tại M, AC giao Oy tại N
B đối xứng A qua Ox => OA = OB => tam giác ABO cân tại O => OM vừa là đường cao vừa là đường phân giác
=> góc AOM = góc MOB
C đối xứng A qua Oy => OA = OC => tam giác ACO cân tại O => ON vừa là đường cao vừa là đường phân giác
=> góc CON = góc NOA
BOC = CON + AON + AOM + BOM = 2xOy = 120o
Cho góc xOy có số đo 50o, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy.
a) So sánh các độ dài OB và OC
b) Tính số đo góc BOC
a) + B đối xứng với A qua Ox
⇒ Ox là đường trung trực của AB
⇒ OA = OB (1)
+ C đối xứng với A qua Oy
⇒ Oy là đường trung trực của AC
⇒ OA = OC (2)
Từ (1) và (2) suy ra OB = OC (= OA)
b) + ΔOAC cân tại O có Oy là đường trung trực
⇒ Oy đồng thời là đường phân giác
+ ΔOAB cân tại O có Ox là đường trung trực
⇒ Ox đồng thời là đường phân giác
Cho góc xOy. Điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy. Tính số đo góc xOy để B đối xứng với C qua O.
Để B đối xứng với Cqua O thì x O y ^ = 900
Cho góc xOy, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy. Tính số đo góc xOy để B đối xứng với C qua O
Vì OB = OC nên để điểm B đối xứng với C qua tâm O cần thêm điều kiện B, O, C thằng hàng
∆ OAB cân tại O có Ox là đường trung trực của AB nên Ox cũng là đường phân giác của ∠ (AOB) ⇒ ∠ O 1 = ∠ O 4 (3)
ΔOAC cân tại O có Oy là đường trung trực của AC nên Oy cũng là đường phân giác của ∠ (AOC) ⇒ ∠ O 2 = ∠ O 3 (4)
Vì B, O, C thẳng hàng nên:
∠ O 1 + ∠ O 2 + ∠ O 3 + ∠ O 4 = 180 0 (5)
Từ (3),(4) ; (5) ⇒ 2 ∠ O 1 + 2 ∠ O 2 = 180 0
⇒ ∠ O 1 + ∠ O 2 = 90 0 ⇒ ∠ (xOy) = 90 0
Vậy ∠ (xOy) = 90 0 thì B đối xứng với C qua O
Cho góc xOy có số đo là 50 độ, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy.
a) So sánh cáo các độ dài của OB và OC.
b) Tính số đo góc BOC.
Cho góc xOy, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy.
a) Chứng minh rằng OB = OC
b) Tính số đo góc xOy để B đối xứng với C qua O
Cho góc xOy có số đo 50o, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy.
a) So sánh các độ dài OB và OC
b) Tính số đo góc BOC
Cho góc xOy, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với với điểm A qua Ox, điểm C đối xứng với điểm A qua Oy
a) Chứng minh OB=OC
b) Tính số đo góc xOy để B đối xứng với C qua O
Cho góc xOy có số đo \(50^0\), điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy
a) So sánh các độ dài OB và OC
b) Tính số đo góc BOC
Bài giải:
a) Ox là đường trung trực của AB nên OA = OB.
Oy là đường trung trực của AC nên OA = OC.
Suy ra OB = OC.
b) ∆AOB cân tại O (vì OA = OB).
Suy ra ˆO1O1^= ˆO2O2^= 12ˆAOB12AOB^
∆AOC cân tại O (vì OA = OC)
Suy ra ˆO3O3^= ˆO4O4^= 12ˆAOC12AOC^
Do đó ˆAOBAOB^ +ˆAOCAOC^ = 2(ˆO1O1^+ˆO3O3^)
= 2ˆxOyxOy^
= 2.500
=1000
Vậy ˆBOCBOC^ = 1000