Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Nguyễn Tú Anh
Xem chi tiết
Nhật Minh
Xem chi tiết
Ngu Người
Xem chi tiết
Thầy Giáo Toán
27 tháng 8 2015 lúc 22:13

Ta có \(2A=20x^2+20y^2+2z^2=\left(z^2+16x^2\right)+\left(z^2+16y^2\right)+4\left(x^2+y^2\right)\)

\(\ge2z\cdot4x+2z\cdot4y+4\cdot2xy=8\left(xy+yz+zx\right)=8\to A\ge4.\)

Dấu bằng xảy ra khi \(z=4x=4y,1=xy+yz+zx=x^2+4x^2+4x^2=9x^2\to x=y=\pm\frac{1}{3},z=\pm\frac{4}{3}.\)

Vậy giá trị bé nhất của \(A\) bằng \(4.\)

 

Ngô Đức Long
Xem chi tiết
Arata Trinity Seven
Xem chi tiết
tth_new
3 tháng 8 2019 lúc 20:14

Xét nào:)

Từ giả thiết suy ra x + y + z > 3

Ta có: \(P=2x^2+xy+2y^2=\frac{5}{4}\left(x+y\right)^2+\frac{3}{4}\left(x-y\right)^2\ge\frac{5}{4}\left(x+y\right)^2\)

Suy ra \(\sqrt{2x^2+xy+y^2}\ge\sqrt{\frac{5}{4}}.\left(x+y\right)=\frac{\sqrt{5}}{2}\left(x+y\right)\)

Tương tự hai BĐT còn lại và cộng theo vế: \(P\ge\sqrt{5}\left(x+y+z\right)\ge3\sqrt{5}\)

Đẳng thức xảy ra khi x = y = z = 1

Is it right?!?

Arata Trinity Seven
3 tháng 8 2019 lúc 21:13

thank ban

Arata Trinity Seven
3 tháng 8 2019 lúc 21:18

bạn giải thích rõ hộ mình dòng 2 với

Thơ Nụ =))
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 1 lúc 21:25

\(\sqrt{x^2+2024}=\sqrt{x^2+xy+yz+zx}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)

Tương tự: \(\sqrt{y^2+2024}\ge\sqrt{xy}+\sqrt{yz}\)

\(\sqrt{z^2+2024}\ge\sqrt{xz}+\sqrt{yz}\)

Cộng vế:

\(P\ge\dfrac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}=2\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{2024}{3}\)

Nguyễn Anh Dũng An
Xem chi tiết
Admin (a@olm.vn)
20 tháng 9 2019 lúc 19:28

Đề sai rồi còn làm gì:)))

Hiền Minh Phạm
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 10 2017 lúc 7:30