cho \(1\le x,y,z\le2\)
và x+y+z=5
tìm Max P= x4+y4+z4
nhờ mn giúp mk vs ak
Cho x,y,z >0 và xy+yz+zx=1
Tìm \(B_{min}=x^2+28y^2+28z^2\)
cho ác số dương x ,y ,z thả mãn x+y+z=3.Tìm GTLN của
B=\(\sqrt{\dfrac{xy}{xy+3z}}\)+\(\sqrt{\dfrac{yz}{yz+3x}}\)+\(\sqrt{\dfrac{zx}{zx+3y}}\)
Cho x,y,z là các số thực dương thỏa mãn x+y+z=1
\(\text{Tìm Min }\text{của}\text{ }P=\frac{x+yz}{y+z}+\frac{y+zx}{z+x}+\frac{z+xy}{x+y}\)
a) Cho x,y,z thỏa mãn x+y+z+xy+yz+zx=6. Tìm Min \(P=x^2+y^2+z^2\)
giải hệ pt : 1) \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}+\sqrt{2-\dfrac{1}{y}}=2\\\dfrac{1}{\sqrt{y}}+\sqrt{2-\dfrac{1}{x}}=2\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^4+x^2y^2+y^4=21\end{matrix}\right.\)
cho x+y+z=1. chứng minh:\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
cho x,y,z dương thỏa mãn x+y+z=1. CMR:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
1. Cho \(x,y,z>0\)\(xyz=1\)
Tìm min P= \(x+y+z+\frac{13}{3\left(xy+yz+zx\right)}\)
2. Cho \(a>0\)
Tìm min P= \(\frac{a^4+a^3+3a^2+a+1}{a^3+a}\)
Cho x,y,z>0 và \(x+y+z\le\dfrac{3}{4}\). Tìm Min A = \(\Sigma\dfrac{x^3}{\sqrt{y^2+3}}\)
Cho x,y,z> 0 và xy+yz+xz = 3xyz . Tìm MaxP = \(\Sigma\dfrac{yz}{x^3\left(z+2y\right)}\)