(1/3 + 1/6) . 2x + 2x+1 = 212 + 210
(1/2-1/3).6x + 6x+2 =615 + 618
a)27+(220-6x).3=615
b)315-(x-3).7=210
c)1302-(2x+421)=503
d)609(5x)=12
e)3.72x-4-2=72x-4
f)32x.3x+1=81
\(27+\left(220-6x\right).3=615\)
\(\rightarrow\left(220-6x\right).3=615-27=588\)
\(\rightarrow220-6x=588:3=196\)
\(\rightarrow6x=220-196=24\)
\(\rightarrow x=24:6=4\)
\(315-\left(x-3\right).7=210\)
\(\Rightarrow\left(x-3\right).7=315-210=105\)
\(\Rightarrow x-3=105:7=15\)
\(\Rightarrow x=15+3=18\)
Trả lời
a)27+(220-6x)3=615
(220-6x)3=615-27
(220-6x)3=588
220-6x =588:3
220-6x =196
6x =220-196
6x =24
=>x =24:6
=>x =4
b)315-(x-3)7=210
(x-3)7=315-210
(x-3)7 =105
x-3 =105:7
x-3 =15
x =15+3
x =18
c)1302-(2x+421)=503
2x+421 =1302-503
2x+421 =799
2x =799-421
2x =378
x =378:2
x =189
d)609(5x)=12
5x =609:12
5x =50,75
x =10,15
Tìm x:
1) -3.(1-2x) - 4.(1+3x) = -5x + 5
2) 3.(2x - 5) - 6.(1 - 4x) = -3x + 7
3) (1 - 3x) - 2.(3x - 6) = -4x - 5
4) x.(4x - 3) - 2x.(2x - 1) = 5x - 7
5) 3x.(2x - 1) - 6x.(x + 2) = -3x + 4
6) (1 - 2x).3 - 4.(6x - 1) = 7x - 5
7) 6x - 3.(1 - 4x) - 5.(x + 1) = 2x + 7
8) 6.(1 - 3x) - 3.(2x + 5) = -10x + 7
9) 3x.(1 - 2x) + 6x^2 - 7x = 8.(1 - 2x) - 9
10) 2x.(1 + 3x) - 3x.(4 + 2x) = 3x - 4
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
P)(9-x)(x^2+2x-3) n)(-x+3)(x^2+x+1) O)(-6x+1/2)(x^2-4x+2) q)(6x+1)(x^2-2x-3) r)(2x+1)(-x^2-3x+1) U)(2x-3)(-x^2+x+6) s)(-4x+5)(x^2+3x-2) V)(-1/2x+3)(2x+6-4x^3)
p) \(\left(9-x\right)\left(x^2+2x-3\right)\)
\(=9\left(x^2+2x-3\right)-x\left(x^2+2x-3\right)\)
\(=9x^2+18x-27-x^3-2x^2+3x\)
\(=-x^3+7x^2+21x-27\)
n) \(\left(-x+3\right)\left(x^2+x+1\right)\)
\(=-x\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)
\(=-x^3-x^2-x+3x^2+3x+3\)
\(=-x^2+2x^2+2x+3\)
o) \(\left(-6x+\dfrac{1}{2}\right)\left(x^2-4x+2\right)\)
\(=-6x\left(x^2-4x+2\right)+\dfrac{1}{2}\left(x^2-4x+2\right)\)
\(=-6x^3+24x^2-12x+\dfrac{1}{2}x^2-2x+1\)
\(=-6x^3+\dfrac{49}{2}x^2-14x+1\)
q) \(\left(6x+1\right)\left(x^2-2x-3\right)\)
\(=6x\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)
\(=6x^3-12x^2-18x+x^2-2x-3\)
\(=6x^3-11x^2-20x-3\)
r) \(\left(2x+1\right)\left(-x^2-3x+1\right)\)
\(=2x\left(-x^2-3x+1\right)+\left(-x^2-3x+1\right)\)
\(=-2x^3-6x^2+2x-x^2-3x+1\)
\(=-2x^3-7x^2-x+1\)
u) \(\left(2x-3\right)\left(-x^2+x+6\right)\)
\(=2x\left(-x^2+x+6\right)-3\left(-x^2+x+6\right)\)
\(=-2x^3+2x^2+12x+3x^2-3x-18\)
\(=-2x^3+5x^2+9x-18\)
s) \(\left(-4x+5\right)\left(x^2+3x-2\right)\)
\(=-4x\left(x^2+3x-2\right)+5\left(x^2+3x-2\right)\)
\(=-4x^3-12x^2+8x+5x^2+15x-10\)
\(=-4x^3-7x^2+23x-10\)
v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4x^3\right)\)
\(=-\dfrac{1}{2}x\left(2x+6-4x^3\right)+3\left(2x+6-4x^3\right)\)
\(=-x^2-3+2x^4+6x+18-12x^3\)
\(=2x^4-12x^3-x^2+6x+15\)
p: (-x+9)(x^2+2x-3)
=-x^3-2x^2+3x+9x^2+18x-27
=-x^3+7x^2+21x-27
n: (-x+3)(x^2+x+1)
=-x^3-x^2-x+3x^2+3x+3
=-x^3+2x^2+2x+3
o: (-6x+1/2)(x^2-4x+2)
=-6x^3+24x^2-12x+1/2x^2-2x+1
=-64x^3+49/2x^2-14x+1
q: (6x+1)(x^2-2x-3)
=6x^3-12x^2-18x+x^2-2x-3
=6x^3-11x^2-20x-3
r: (2x+1)(-x^2-3x+1)
=-2x^3-6x^2+2x-x^2-3x+1
=-2x^3-7x^2-x+1
u: =-2x^3+2x^2+12x+3x^2-3x-18
=-2x^3+5x^2+9x-18
s: =-4x^3-12x^2+8x+5x^2+15x-10
=-4x^3-7x^2+23x-10
(1/2 -1/3). 6x.6x+2=615
\(\left(\dfrac{1}{2}-\dfrac{1}{3}\right)\cdot6^x\cdot6^{x+2}=6^{15}\)
\(\Rightarrow\dfrac{1}{6}\cdot6^{x+2+x}=6^{15}\)
\(\Rightarrow6^{2x+3}=6^{15}:\dfrac{1}{6}\)
\(\Rightarrow6^{2x+2}=6^{16}\)
\(\Rightarrow2x+2=16\)
\(\Rightarrow2x=16-2\)
\(\Rightarrow2x=14\)
\(\Rightarrow x=7\)
1/6 . 6x . 6x.62=615
6x+2.6=615
62x = 615/6
62x =614
=>2x = 14
=>x = 14:2
=>x = 7
Dạng 1: Rút gọn biểu thức
1:3x(x-2)-5x(1-x)-8(x^2-3)
2:(4x-5)(2x+3)-4(x+2)(2x-1)+10x+7
3:(6x+1)^2+(6x-1)^2-2(1+6x)(6x-1)
4: (x^2-2x+2)(x^2-2)(x^2+2x+2)(x^2+2)
5: (x+1)^3+(x-1)^3+x^3-3x(x+1)(x-1)
6:3(2^2+1)(2^4+1)........(2^64+1)+1
1: \(=3x^2-6x-5x+5x^2-8x^2+24=-11x+24\)
2: \(=8x^2+12x-10x-15-4\left(2x^2-x+4x-2\right)+10x+7\)
\(=8x^2+12x-8-8x^2+4x-16x+8\)
\(=0\)
3: \(=\left(6x+1-6x+1\right)^2=4\)
5: \(=x^3+3x^2+3x+1+x^3-3x^2+3x-1+x^3-3x\left(x^2-1\right)\)
\(=3x^3+6x-3x^3+3x=9x\)
Rút gọn các biểu thức sau
1,(6x+1)^2+(6x-1)^2-2(1+6x)(6x-1) 7,(a+b)^3+(a-b)^3-2a^3(3x-5)(2x+1)-(6x^2-5)
2,3(2^2+1)(2^4+1)(2^8+1)(2^16+1) 8,(2x+3)(2x-3)-(2x+1)^2
3,x(2x^2-3)-x^2(5x+1)+x^2
4,3x(x-2)-5x(1-x)-8(x^2-3)
5,5y(2y-1)-(3y+2)(3-3y)
6,(x+y)-(x-y)^2
a) ( 6x + 1 )2 + ( 6x - 1 )2 - 2( 1 + 6x )( 6x - 1 )
= ( 6x + 1 )2 - 2( 1 + 6x )( 6x - 1 ) + ( 6x - 1 )2
= ( 6x + 1 - 6x + 1 )2 = 22 = 4
làm phép chia :
a) (x^4 -2x^3 + 2x -1) : (x^2 - 1)
b) (x^3 -8) : (x^2 + 2x +4)
c) (x^6 - 2x^5 + 2x^4 + 6x^3 - 4x^2)n: 6x^2
d) (-2x^5 + 3x^2 - 4x^3) :2x^2
e) (15x^3 - 10x^2 + x - 2) : (x - 2)
f) (2x^4 - 3x^3 - 3x^2 + 6x - 2) : (x^2 - 2)
b: =x-2
d: \(=-x^3+\dfrac{3}{2}-2x\)
1. Giải phương trình:
1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)
3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)
4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)
5/ \(x^2-\left(m+1\right)x+2m-6=0\)
6/ \(615+x^2=2^y\)
2.
a, Cho các số dương a,b thoả mãn \(a+b=2ab\).
Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).
b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).
Tính GTNN và GTLN của biểu thức \(P=x+y\).
3. Cho hàm số \(y=\left(m+3\right)x+2m-10\) có đồ thị đường thẳng (d), hàm số \(y=\left(m-4\right)x-2m-8\) có đồ thị đường thẳng (d2) (m là tham số, \(m\ne-3\) và \(m\ne4\)). Trên mặt phẳng toạ độ Oxy, (d) cắt trục hoành tại điểm A, (d2) cắt trục hoành tại điểm B, (d) cắt (d2) tại điểm C nằm trên trục tung. Chứng minh hệ thức \(\dfrac{OA}{BC}=\dfrac{OB}{AC}\).
4. Cho 2 đường tròn (O) và (I) cắt nhau tại dây AB, chứng minh rằng \(\Delta OAI=\Delta OBI\).
thu gọn
a) 5y.(2y-1)-(3y+2).(3-3y)
b) (6x+1)^2 -2(6x+1).(6x-1)+(6x-1)^2
c) (2x+3)-2(2x+3)(x-2)+(x-2)^2
`a)5y(2y-1)-(3y+2)(3-3y)`
`=10y^2-5y+(3y+2)(3y-3)`
`=10y^2-5y+9y^2-9y+6y-6`
`=19y^2-8y-6`
`b)(6x+1)^2-2(6x+1)(6x-1)+(6x-1)^2`
`=(6x+1-6x+1)^2`
`=2^2=4`
`c)(2x+3)^2-2(2x+3)(x-20+(x-2)^2`
`=(2x+3-x+2)^2`
`=(x+5)^2`
`=x^2+10x+25`
(2x-3)^2-(3-2x)(9+6x+4x^2)=(1+6x)(1-6x)