cho hình chóp SABC có đáy là tam giác vuông cân tại C, cạnh huyền bằng 3a, G là trọng tâm tam giác ABC, SG vuông soc với mp (ABC), SB= a căn 14 trên 2. Tính thể tích khối chóp SABC và khoảng cách từ B đến mp (SAC)
Cho hình chóp S.ABC có đáy tam giác vuông cân tại C ,cạnh huyền bằng 3a, G là trọng tâm tam giác ABC, \(SG\perp\left(ABC\right)\)\(SB=\frac{a\sqrt{14}}{3}\). Tính thể tích khối chóp S.ABC và khoảng cách từ B đến mặt phẳng (SAC) theo a.
Vì tam giác ABC vuông cân tại C, \(AB=3a\Rightarrow CA=CB=\frac{3a}{\sqrt{2}}\)
Gọi M là trung điểm \(AC\Rightarrow MC=\frac{3a}{2\sqrt{2}}\Rightarrow MB=\frac{3a\sqrt{5}}{2\sqrt{2}}\)
\(\Rightarrow BG=\frac{2}{3}BM=\frac{a\sqrt{5}}{\sqrt{2}}\Rightarrow SG=\sqrt{SB^2-BG^2}=a\)
\(\Rightarrow V_{S.ABC}=\frac{1}{3}SG.S_{\Delta ABC}=\frac{3a^2}{4}=\frac{3a^2}{4}\)
Kẻ \(GI\perp AC\left(I\in AC\right)\Rightarrow AC\perp\left(SGI\right)\)
Ta có : \(GI=\frac{1}{3}BC=\frac{a}{\sqrt{2}}\)
Kẻ \(GH\perp SI\left(H\in SI\right)\Rightarrow GH\perp\left(SAC\right)\Rightarrow d\left(G,\left(SAC\right)\right)=GH\)
Ta có \(\frac{1}{GH^2}=\frac{1}{GS^2}+\frac{1}{GI^2}\Rightarrow GH=\frac{a}{\sqrt{3}}\Rightarrow3d\left(B,\left(SAC\right)\right)=3GH=a\sqrt{3}\)
cho hình chóp đều SABC cạnh đáy bằng a. G là trọng tâm của tam giác ABC. Góc giữa SB và đáy là 30°. Mặt phẳng (P) chứa BC và vuông góc với SA chia khối chóp SABC thành 2 phần. Tỉ số thể tích 2 phần là
hình như đáp số hơi xấu thì phải bạn ạ? :D có gì check lại các phép toán hộ mình nhé
Hình vẽ minh họa và các thao tác vẽ hình ở bên dưới
Dễ tính: \(SK=\sqrt{SB^2-BK^2}=\dfrac{a\sqrt{7}}{6}\)
Ta lại có: \(S_{SAK}=\dfrac{1}{2}SG.AK=\dfrac{1}{2}HK.SA\)
\(\Rightarrow HK=\dfrac{SG.AK}{SA}=\dfrac{a}{3}\) Trong đó: \(SG=\dfrac{a}{3};AK=\dfrac{2a}{3};SA=SB=SC=\dfrac{2a}{3}\) ( Tam giác SAK cân tại A )
\(\Rightarrow SH=\sqrt{SK^2-HK^2}=\dfrac{a\sqrt{3}}{6}\)
Theo định lý Symson: \(\dfrac{S_{SHBC}}{S_{SABC}}=\dfrac{SH}{SA}=\dfrac{\sqrt{3}}{4}\Rightarrow S_{SHBC}=\dfrac{\sqrt{3}}{4}S_{SABC}\) (1)
\(\Rightarrow S_{HABC}=\left(\dfrac{4-\sqrt{3}}{4}\right)S_{SABC}\) (2)
Từ (1) và (2) suy ra được tỉ lệ thể tích giữa 2 phần là: \(\dfrac{3+4\sqrt{3}}{13}\)
cho hình chóp đều SABC cạnh đáy bằng a. G là trọng tâm của tam giác ABC. Góc giữa SB và đáy là 30°. Mặt phẳng (P) chứa BC và vuông góc với SA chia khối chóp SABC thành 2 phần. Tỉ số thể tích 2 phần là
Kiểm tra lại đề bài câu này
Nếu góc giữa SB và đáy là 30 độ thì (P) sẽ cắt SA tại 1 điểm nằm ngoài khối chóp (nằm phía trên điểm S chứ không nằm giữa S và A) nên không thể chia khối chóp thành 2 phần được.
cho hình chóp SABC có đáy ABC là tam giác vuông cân tại C, BC=a. Hình chiếu vuông góc của S lên mặt phẳng ABC là trung điểm H của cạnh AB, biết rằng SH=2a. Tính theo a thể tích khổi chóp và khoảng cách từ điểm B đế (MAC) với M là trung điểm SB
/hoi-dap/question/31869.html
bạn tham khảo coi
Cho hình chóp SABCD có SA vuông góc với đáy. Tính thể tích khối chóp SABC biết: a. Tam giác ABC đều cạnh a, góc giữa SB và đáy là 30°. b. Tam giác ABC vuông tại A, AB=a, SA=5a; góc giữa SC và đáy là 60°
Cho hình chóp SABCD có SA vuông góc với đáy. Tính thể tích khối chóp SABC biết: a. Tam giác ABC đều cạnh a, góc giữa SB và đáy là 30°. b. Tam giác ABC vuông tại A, AB=a, SA=5a; góc giữa SC và đáy là 60°
Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B, AB=2, các cạnh bên đều bằng 2. Tính thể tích của khối cầu ngoại tiếp hình chóp SABC bằng
Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B, A B = 2 , các cạnh bên đều bằng 2. Tính thể tích của khối cầu ngoại tiếp hình chóp SABC bằng
A. 32 π 3
B. 4 3 π 27
C. 8 2 π 3
D. 8 π 3
Cho hình chóp SABC có tam giác ABC vuông tại A, AB=AC=a. I là trung điểm của SC.Hình chiếu vuông góc của S lên mp (ABC) là trung điểm H của BC , mp (SAB) tạo với đáy một góc 60. Tính thể tích khối chóp SABC và khoảng cách từ I tới mp (SAB) theo a
chứng minh được AH=BH -> SA= SB _> tam giác SAB cân ở S
gọi M là trung điểm của AB -> SM vuông góc với AB -> góc giữa mp (SAB) và mp (ABC) là góc SMH -> góc SMH = 60 độ
-> tìm được SH -> tìm được thể tích
tìm diên tích tam giác SAB -> khoảng cách từ C đến mp (SAB)
Vì I là trung điểm của SC nên khoảng cách từ I đến mp (SAB) bằng một nửa khoảng cách từ C đến mp (SAB)
Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B, AB = 2, các cạnh bên đều bằng 2. Tính thể tích V của khối cầu ngoại tiếp hình chóp SABC
A. V = 32 π 3
B. V = 4 3 π 27
C. V = 8 2 π 3
D. V = 8 π 3