Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kudo shinichi
Xem chi tiết
Thanh Nguyễn
Xem chi tiết
Nguyệt Dạ
9 tháng 8 2019 lúc 18:22

Nối AC, trên cạnh AC lấy điểm I sao cho \(\overrightarrow{AI}=\frac{2}{3}\overrightarrow{AC}\)

Xét tam giác ABC có: \(\frac{AM}{AB}=\frac{AI}{AC}=\frac{2}{3}\) \(\Rightarrow\overrightarrow{MI}=\frac{2}{3}\overrightarrow{BC}\)

Tương tự trong tam giác ACD có: \(\overrightarrow{IN}=\frac{2}{3}\overrightarrow{AD}\)

Ta có: \(\overrightarrow{MN}=\overrightarrow{MI}+\overrightarrow{IN}=\frac{2}{3}\left(\overrightarrow{BC}+\overrightarrow{AD}\right)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 21:19

a) \(\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DA}  = \left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right) + \left( {\overrightarrow {CD}  + \overrightarrow {DA} } \right) = \overrightarrow {AC}  + \overrightarrow {CA}  = \overrightarrow {AA}  = \overrightarrow 0 \)

b) \(\overrightarrow {AB}  - \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {DA}  = \overrightarrow {DA}  + \overrightarrow {AB}  = \overrightarrow {DB} \)

c) \(\overrightarrow {CB}  - \overrightarrow {CD}  = \overrightarrow {CB}  + \overrightarrow {DC}  = \overrightarrow {DC}  + \overrightarrow {CB}  = \overrightarrow {DB} \)

Nguyễn Thu Trà
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
24 tháng 9 2023 lúc 20:40

Tham khảo:

a)  M thuộc cạnh BC nên vectơ \(\overrightarrow {MB} \) và \(\overrightarrow {MC} \) ngược hướng với nhau.

Lại có: MB = 3 MC \( \Rightarrow \overrightarrow {MB}  =  - 3.\overrightarrow {MC} \)

b) Ta có: \(\overrightarrow {AM}  = \overrightarrow {AB}  + \overrightarrow {BM} \)

Mà \(BM = \dfrac{3}{4}BC\) nên \(\overrightarrow {BM}  = \dfrac{3}{4}\overrightarrow {BC} \)

\( \Rightarrow \overrightarrow {AM}  = \overrightarrow {AB}  + \dfrac{3}{4}\overrightarrow {BC} \)

Lại có: \(\overrightarrow {BC}  = \overrightarrow {AC}  - \overrightarrow {AB} \) (quy tắc hiệu)

\( \Rightarrow \overrightarrow {AM}  = \overrightarrow {AB}  + \dfrac{3}{4}\left( {\overrightarrow {AC}  - \overrightarrow {AB} } \right) = \dfrac{1}{4}.\overrightarrow {AB}  + \dfrac{3}{4}.\overrightarrow {AC} \)

Vậy \(\overrightarrow {AM}  = \dfrac{1}{4}.\overrightarrow {AB}  + \dfrac{3}{4}.\overrightarrow {AC} \)

Quang Huy Điền
Xem chi tiết
tơn nguyễn
Xem chi tiết
Ngô Thành Chung
12 tháng 1 2021 lúc 20:18

undefined

undefined

Lười đánh máy nên luyện chữ :))

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 16:01

Ta có:

\(\overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AD}  + \overrightarrow {DN} \)

Mặt khác: \(\overrightarrow {MN}  = \overrightarrow {MB}  + \overrightarrow {BC}  + \overrightarrow {CN} \)

\(\begin{array}{l} \Rightarrow 2\overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AD}  + \overrightarrow {DN}  + \overrightarrow {MB}  + \overrightarrow {BC}  + \overrightarrow {CN} \\ \Leftrightarrow 2\overrightarrow {MN}  = \left( {\overrightarrow {MA}  + \overrightarrow {MB} } \right) + \left( {\overrightarrow {DN}  + \overrightarrow {CN} } \right) + \overrightarrow {BC}  + \overrightarrow {AD} \\ \Leftrightarrow 2\overrightarrow {MN}  = \overrightarrow 0  + \overrightarrow 0  + \overrightarrow {BC}  + \overrightarrow {AD} \\ \Leftrightarrow 2\overrightarrow {MN}  = \overrightarrow {BC}  + \overrightarrow {AD} \end{array}\)

Lại có: 

\(\overrightarrow {BC}  + \overrightarrow {AD}  = \overrightarrow {BD}  + \overrightarrow {DC}  + \overrightarrow {AD}  = \overrightarrow {AD}  + \overrightarrow {DC} + \overrightarrow {BD}  = \overrightarrow {AC}  + \overrightarrow {BD} .\)

Vậy \(\overrightarrow {BC}  + \overrightarrow {AD}  = 2\overrightarrow {MN}  = \;\overrightarrow {AC}  + \overrightarrow {BD} .\)

Quỳnh Như
Xem chi tiết