Cho tứ giác ABCD, trên AB, CD lần lượt lấy điểm M, N sao cho \(\overrightarrow{AM}=k\overrightarrow{AB}\) , \(\overrightarrow{DN}=k\overrightarrow{DC}\) \(\left(k\ne1\right)\).
a, Phân tích \(\overrightarrow{MN}\) theo \(\overrightarrow{AD}\) và \(\overrightarrow{BC}\)
b, Gọi P, Q, I lần lượt là các điểm thuộc các cạnh AD, BC, MN sao cho \(\overrightarrow{AP}=l\overrightarrow{AD},\overrightarrow{BQ}=l\overrightarrow{BC},\overrightarrow{MI}=l\overrightarrow{MN}\). Chứng minh rằng: I, Q, P thẳng hàng
cho tam giác ABC . gọi M là điểm thuộc cạnh AB , N là điểm thuộc cạnh AC sao cho AM =\(\dfrac{1}{3}\) AB , AN =\(\dfrac{3}{4}\) AC . gọi O là giao điểm của CM và BN
a) Biểu diễn vecto \(\overrightarrow{AO}\) theo 2 vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b) trên đường thẳng BC lấy E . Đặt \(\overrightarrow{BE}\)= x.\(\overrightarrow{BC}\) . tìm x để A,O ,E thẳng hàng
Cho tam giác ABC, gọi M là trung điểm AB, D là trung điểm BC, N thuộc cạnh AC sao cho \(\overrightarrow{CN}=2\overrightarrow{NA}\), K là trung điểm MN. Biểu diễn \(\overrightarrow{KD}=m\overrightarrow{AB}+n\overrightarrow{AC}\), giá trị m - n = ...
Cho tam giác ABC, gọi M là trung điểm của AB, N là điểm thuộc cạnh AC sao cho \(\overrightarrow{CN}=2\overrightarrow{NA}\), K là trung điểm MN, biểu diễn \(\overrightarrow{AK}=m.\overrightarrow{AB}+n.\overrightarrow{AC}\) thì giá trị n = ...
Cho hình bình hành ABCD, lấy M trên cạnh AB và N trên cạnh CD sao cho \(\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB};\overrightarrow{DN=\dfrac{1}{2}\overrightarrow{DC}}\). Gọi I và J là các điểm thỏa mãn \(\overrightarrow{BI}=m\overrightarrow{BC;}\overrightarrow{AJ}=n\overrightarrow{AI}\). Khi J là trọng tâm tam giác BMN thì tích m.n bằng bao nhiêu ?
Cho tam giác ABC, gọi M là điểm thuộc cạnh BC sao cho MB = 2 MC, biểu diễn \(\overrightarrow{AM}=m\overrightarrow{AB}+n\overrightarrow{AC}\). Giá trị m.n bằng...
1/ Cho tam giác ABC và trung tuyến CM tìm và dựng điểm E sao cho :
\(\overrightarrow{EA}+\overrightarrow{EB}+2\overrightarrow{EC}=\overrightarrow{0}\)
2/Cho 1 hình thang ABCD .Gọi M,N theo thứ tự là các trung điểm của các cạnh bên AD , BC . Biết \(\overrightarrow{AB}=\overrightarrow{u},\overrightarrow{BC}=\overrightarrow{v}\). Hãy biểu diễn \(\overrightarrow{MN},\overrightarrow{AM},\overrightarrow{CN}\) theo \(\overrightarrow{u}\) và \(\overrightarrow{v}\)
1. Cho hình bình hành ABCD tâm O. Đẳng thức nào sau đây đúng ?
A. \(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{2BC}\)
B.\(\overrightarrow{AC}-\overrightarrow{CB}=\overrightarrow{AB}\)
C.\(\overrightarrow{AC}-\overrightarrow{BD}=\overrightarrow{2CD}\)
D. \(\overrightarrow{DA}+\overrightarrow{DC}=\overrightarrow{2DO}\)
2. Cho tứ giác ABCD, M và N lần lượt là trung điểm của AD,BC, đặt \(\overrightarrow{AB}=\overrightarrow{a};\overrightarrow{DC}=\overrightarrow{b}\) khi đó số m, n thỏa mãn\(\overrightarrow{MN}=\overrightarrow{ma}+\overrightarrow{nb}\) là :
A. m= \(-\dfrac{1}{2}\) , n =\(\dfrac{1}{2}\)
B. m = \(\dfrac{1}{2},n=\dfrac{1}{2}\)
C.\(m=\dfrac{1}{2},n=-\dfrac{1}{2}\)
D. \(m=-\dfrac{1}{2},n=-\dfrac{1}{2}\)
3. Cho tứ giác BDEF. CMR : \(\overrightarrow{BD}+\overrightarrow{FE}=\overrightarrow{FD}+\overrightarrow{EB}\)
Cho tam giác ABC, gọi M, N lần lượt là các điểm thuộc cạnh AB, AC sao cho AM = 1/2 MB; AN = 3NC, K là trung điểm MN. Biểu thị \(\overrightarrow{AK}=m.\overrightarrow{AB}+n.\overrightarrow{AC}\), tích m.n = ...