phân tích đa thức thành nhân tử x^2-2x+2 và x^2 +2x+2
Phân tích đa thức thành nhân tử (x^2+2x)(x^2+2x+2)+1
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Phân tích đa thức thành nhân tử
(x-1)\(^2\)-2(x-1)(2x+1)+(2x+1)\(^2\)
`(x-1)^2-2(x-1)(2x+1)+(2x+1)^2`
`=(x-1-2x-1)^2`
`=(-x-2)^2`
\(\left(x-1\right)^2-2\left(x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)
\(=\left(x-1-2x-1\right)^2=\left(-x-2\right)^2=\left(x+2\right)^2\)
Phân tích đa thức thành nhân tử: (x^2+2x)^2+3(x^2+2x)+2
\(\left(x^2+2x\right)^2+3.\left(x^2+2x\right)+2\)
\(=\left(x^2\right)^2+4x^3+4x^2+3x^2+6x+2\)
\(=x^4+4x^3+7x^2+6x+2\)
Các bạn ơi giải hộ mình vs mình cần gấp:
phân tích các đa thức sau thành nhân tử:
X^3-2x^2-x+2
X^2+6x-y^2+9
Phân tích đa thức 2x^3y-2xy^3-4xy^2-2xy thành nhân tử
a) x3-2x2-x+2
=x(x2-1)+2(-x2+1)
=x(x2-1)-2(x2-1)
=(x2-1)(x-2)
b)
x2+6x-y2+9
=x2+6x+9-y2
=(x+3)2-y2
=(x+3-y)(x+3+y)
phân tích đa thức thành nhân tử
(x^2+2x+x)(x^2+2)(x^2-2x+2)(x^2-2)
bài 1: Phân tích đa thức thành nhân tử:
a) (x^2+2x).(x^2+2x+4)+3
\(a)\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)
Để đơn giản hơn cũng như là dễ nhìn hơn thì ta :
Đặt : \(x^2+2x=a\)
Do đó ta có đa thức :
\(a.\left(a+4\right)+3=a^2+4a+3\)
\(=a^2+a+3a+3\)
\(=a\left(a+1\right)+3\left(a+1\right)\)
\(=\left(a+1\right)\left(a+3\right)\)
\(=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)
\(=\left(x+1\right)^2.\left(x^2+2x+3\right)\)
Hoặc bạn có thể đặt \(x^2+2x+2=t\)
Thì \(P=\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)
\(P=\left(t-2\right)\left(t+2\right)+3\)
\(P=t^2-4+3\)
\(P=t^2-1\)
\(P=\left(t-1\right)\left(t+1\right)\)
\(P=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)
\(P=\left(x+1\right)^2\left(x^2+2x+3\right)\)
a) \(\left(x^2+2x\right).\left(x^2+2x+4\right)+3\)
\(=x^4+4x^3+4x^2+4x^3+16x^2+16x\)
\(=x^4+8x^3+20x^2+16x\)
\(=\left(x^4+8x^3+20x^2+16x\right)+3\)
\(=x^4+8x^3+20x^2+16x+3\)
\(x^3+2-2x^2-x\)
Phân tích đa thức thành nhân tử
\(x^3+2-2x^2-x=\left(x^3-2x^2\right)-\left(x-2\right)=x^2\left(x-2\right)-\left(x-2\right)=\left(x^2-1\right)\left(x-2\right)=\left(x-1\right)\left(x+1\right)\left(x-2\right)\)
\(x^3+2-2x^2-x\)
\(=\left(x^3-2x^2\right)+\left(2-x\right)\)
\(=x^2\left(x-2\right)-\left(x-2\right)\)
\(=\left(x^2-1\right)\left(x-2\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ 9(x^2-2x-3)^4-37x^2(x^2-2x-3)^2+4x^2