The right triangle FGH has mid-segment : 10cm ; 24cm 26cm . What is the area of the right triangle FGH ?
The right triangle FGH has mid-segments of length 10cm, 24cm and 26cm. What is the area of triangle FGH?
Dễ lắm ak nha!
Giả sử FG = 10 cm ; GH = 24 cm ; FH = 26 cm
Ta có: FG2 + GH2 = 102 + 242 = 676 cm2
FH2 = 262 = 676 cm2
=> FG2 + GH2 = FH2 ( vì 676 = 676)
=> Tam giác FGH vuông tại G
=> \(S_{FGH}\) = 10 x 24 = 240 (cm2)
Vậy ......................
À đáp án là 480 cm mới đúng nha .
Mid-segments là đường trung bình mà .
Vì đường trung bình của tam giác lần lượt là 10cm ; 24cm ; 26cm =)) Các canh của tam giác lần lượt là 20cm ; 48cm ; 52cm
Ta thấy : 52^2 = 48^2 + 20^2
Nên tam giác FGH là tâm giác vuông
Diện tích tam giác FGH là :
(20*48):2=480(cm2)
The right triangle FGH has mid-segments of length 10 cm, 24cm and 26cm. What is the area of triangle FGH
The triangle ABC has \(AB=24cm\). If D is on the line segment AC such that \(\widehat{ABC}=\widehat{BDC}\)and \(AD=7cm;DC=9cm\)then what is the length of BD?
Note: You must write your answer in English.
vtui,yvtnytifn tfmt rtdnhx gh yhf g fgxh
We have \(\Delta CAB\sim\Delta CDB\left(g.g\right)\Rightarrow\dfrac{CB}{CD}=\dfrac{CA}{CB}\) \(\Rightarrow CB^2=CD\cdot CA\) We have \(CA=CD+DA=16\left(cm\right)\) \(\Rightarrow CB^2=9\cdot16=144\Rightarrow CB=12\left(cm\right)\) We have \(\dfrac{DB}{BA}=\dfrac{CB}{CA}=\dfrac{12}{16}=\dfrac{3}{4}\) \(\Rightarrow DB=\dfrac{3}{4}AB=18\left(cm\right)\)
Dịch bài toán sau và giải :
"Give a right triangle ABC (Â=90) with B =40 and the line d is a the midperpendicular of the segment BC . Suppose that d AB = {E} , E of the segment BC . If BE=16 cm then the area of ABC is ... cm^2.
(round to three demical places in each step)
A . 256
B . 147,95
C . 128
D . 295,9
Using The triangle inequalities ,check to know which set of line segment lengths can't be set of the three sides in any triangle
A, 2cm, 3cm, 6cm
B, 2cm 4cm 6cm
C, 3cm 4cm, 6cm
My answer is : B . 2 cm , 4 cm , 6 cm
Toán -Tiếng anh nhá
The sum of angles at the base of a trapezoid is equal to 90 độ. Prove that the segment that connects the mid points of the bases is equal to a a half difference of the bases.
A right triangle has a leg that is 30cm and a hypotenuse that is 34cm. What is the length of the other leg in centimeter?
Ta có Áp dụng định lí py-ta-go vào trong tam giác vuông :
\(30^2+x^2=34^2=>x=16\left(cm\right)\)
Vậy độ dài cạnh còn lại là 16cm
Given a right triangle ABC (AB is perpendicular to AC) and tthe bisector BD (D \(\in\) AC). Find the area of ABC if AD = 6cm and CD = 10cm
ta có \(\frac{AB}{AD}=\frac{BC}{DC}\)
mà AB2+AC2=BC2
nên AB =12 ;BC=20
vậy diện h là:96
A triangle ABC has the height AH = 8 cm corresponding the base BC = 10 cm. What is the length of the base AB of the triangle ABC if the height of CK = 5 cm ()?