Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Kim Ngân
Xem chi tiết
nhật công super
Xem chi tiết
ĐInh Cao Quang Trung
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 21:14

\(a,x^2-6xy+9y^2+1=\left(x-3y\right)^2+1\ge1>0\\ b,-25x^2+5x-1=-\left(25x^2+2\cdot5\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(5x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\)

Nguyễn Lê Việt ANh
Xem chi tiết
Akai Haruma
23 tháng 9 2017 lúc 10:00

Lời giải:

\(A=x^2-3x+3=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\geq 0+\frac{3}{4}\Leftrightarrow A\geq \frac{3}{4}>0\)

Do đó ta có đpcm.

\(B=x^2-2x+9y^2-y+3\)

\(\Leftrightarrow B=(x^2-2x+1)+(9y^2-y+\frac{1}{36})+\frac{71}{36}\)

\(\Leftrightarrow B=(x-1)^2+\left(3y-\frac{1}{6}\right)^2+\frac{71}{36}\geq 0+0+\frac{71}{36}\)

\(\Leftrightarrow B\geq \frac{71}{36}>0\) (đpcm)

nguyễn văn an
Xem chi tiết
Cold Wind
4 tháng 9 2016 lúc 8:54

Q= 2x^2 + 9y^2 - 6xy + 2x +11

= x^2 - 6xy + 9y^2 + x^2 + 2x +1 +10

= (x-3y)^2 + (x+1)^2  +10

Ta có: (x-3y)^2 >/ 0

(x+1)^2 >/ 0

10 > 0

Vậy Q luôn có giá trị dương với mọi x và y. 

JOKER_Võ Văn Quốc
4 tháng 9 2016 lúc 8:59

\(=\left(x^2-6xy+9y^2\right)+\left(x^2+2x+1\right)+10\)\(=\left(x-3y\right)^2+\left(x+1\right)^2+10\ge10\)

Dấu ''='' xảy ra khi x=-1 và y=-1/3

Hockaido
Xem chi tiết
Đặng Mai
Xem chi tiết
nguyễn thảo hân
Xem chi tiết
Nguyễn Phạm Thanh Ngân
Xem chi tiết