Tìm x:
a, \(4\text{x}^2\) - 49 = 0
b, \(x^2\)+36 = 0
Tìm x biết.
a) 4x^2 - 49 = 0 b) x^2 + 36 = 12x
c) 1/16x^2 - x + 4 = 0 d) x^3 -3√3x2 + 9x - 3√3 = 0
e) (x - 2)^2 - 16 = 0 f) x^2 - 5x - 14 = 0
g) 8x(x - 3) + x - 3 = 0
a, 4x2 - 49 = 0
⇔⇔ (2x)2 - 72 = 0
⇔⇔ (2x - 7)(2x + 7) = 0
⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72
b, x2 + 36 = 12x
⇔⇔ x2 + 36 - 12x = 0
⇔⇔ x2 - 2.x.6 + 62 = 0
⇔⇔ (x - 6)2 = 0
⇔⇔ x = 6
e, (x - 2)2 - 16 = 0
⇔⇔ (x - 2)2 - 42 = 0
⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0
⇔⇔ (x - 6)(x + 2) = 0
⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2
f, x2 - 5x -14 = 0
⇔⇔ x2 + 2x - 7x -14 = 0
⇔⇔ x(x + 2) - 7(x + 2) = 0
⇔⇔ (x + 2)(x - 7) = 0
⇔{x+2=0x−7=0⇔{x=−2x=7
a,\(4x^2-49=0\)
\(\Leftrightarrow\left(2x\right)^2-7^2=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\2x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=7\\2x=-7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{7}{2}\end{cases}}}\)
b.\(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x-6=0\Leftrightarrow x=6\)
c.\(\frac{1}{16x^2}-x+4=0\)
\(\Leftrightarrow\left(\frac{1}{4x}\right)^2-2.\frac{1}{4x}.2+2^2=0\)
\(\Leftrightarrow\left(\frac{1}{4x}-2\right)^2=0\)
........
bài 1 :tìm x,y biết
a) (5x+1)=\(\dfrac{36}{49}\) b) (x-2/9) = (2/3) c)(8x-1) 2x+1= 5^2 x+1
d) (x-3,5)^x+(y - 1/10)^4=0
`(5x+1)=36/49`
`<=> 5x = 36/49-1`
`<=> 5x = -13/49`.
`<=> x = -13/245.`
Vậy `x = -13/245`.
`b, x-2/9 = 2/3`.
`<=> x = 2/3 + 2/9`
`<=> x = 8/9`.
Vậy `x = 8/9`.
c: (8x-1)^(2x+1)=5^(2x+1)
=>8x-1=5
=>8x=6
=>x=3/4
d: Sửa đề: (x-3,5)^2+(y-1/10)^4=0
=>x-3,5=0 và y-0,1=0
=>x=3,5 và y=0,1
Tìm x,y thuộc Z biết
a,(2x+5)(5-x)=0
b,(x2 - 4)(x2 - 36)=0
c,(x2 - 4)(x2 - 49)=0
d,(x + 3)(xy+1)=3
e,xy - 2x = 5
f,11 < x2 < 44
a,2x+5 = 0 hoặc 5-x=0 ( còn lại tự tính)
b,,x2-4=0 hoặc x2-36=0 ( còn lại tự tính)
tương tự như vậy làm câu c
d, bài này dài ( không làm )
e, ......( dài)
f, x={4;5;6}
Bài 3: Tìm x biết
a) 4x^2 - 49 = 0;
b) x^2 + 36 = 12x;
c) 116x^2 - x + 4 = 0;
d) x^3 - 3 căn bậc 3x^2 + 9x - 3 căn bậc 3 = 0;
a) \(4x^2-49=0\)
<=> \(\left(2x-7\right)\left(2x+7\right)=0\)
<=> \(\left\{{}\begin{matrix}2x-7=0\\2x+7=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{7}{2}\end{matrix}\right.\)
b) x2 + 36 = 12x
<=>x2 + 36 - 12x=0
<=> (x-6)2=0
<=> x-6 =0
<=> x=6
d) x3 -3\(\sqrt{3}\) x2+9x - 3\(\sqrt{3}\) =0
<=> \(\left(x-\sqrt{3}\right)^3=0\)
<=> \(x-\sqrt{3}=0\)
<=> \(x=\sqrt{3}\)
(Bài 14; Tìm x biết
1) x ^ 2 - 9 = 0
4) 4x ^ 2 - 4 = 0
7) (3x + I) ^ 2 - 16 = 0
10) (x + 3) ^ 2 - x ^ 2 = 45
2) 25 - x ^ 2 = 0
5) 4x ^ 2 - 36 = 0
8) (2x - 3) ^ 2 - 49 = 0
11) (5x - 4) ^ 2 - 49x ^ 2 = 0
3) - x ^ 2 + 36 = 0
6) 4x ^ 2 - 36 = 0
9) (2x - 5) ^ 2 - x ^ 2 = 0
12) 16 * (x - 1) ^ 2 - 25 = 0
1, \(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy \(x\) \(\in\) {-3; 3}
7, (3\(x\) + 1)2 - 16 = 0
(3\(x\) + 1 - 4)(3\(x\) + 1 + 4) = 0
(3\(x\) - 3).(3\(x\) + 5) = 0
\(\left[{}\begin{matrix}3x-3=0\\3x+5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=3\\3x=-5\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=\dfrac{-5}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {1; - \(\dfrac{5}{3}\)}
10, (\(x\) + 3)2 - \(x^2\) = 45
[(\(x\) + 3) - \(x\)].[(\(x\) + 3) + \(x\)] = 45
3.(2\(x\) + 3) = 45
2\(x\) + 3 = 15
2\(x\) = 12
\(x\) = 6
B1 tìm số nguyên x,y biết
a) (x-1) . ( y+1) =5
b) (x+y) . (y-3)= -3
c) x . y = -35
B2 tìm x thuộc Z biết
a) 12 . x = 144
b) 0 . x = 4
c) 5 . x =0
d) 3 . (x-4)=0
e) (x+1) . (x-3)=0
f) (x2+7) . ( x2-49)=0
g) (x2+7) . (x2-49)<0
h) (x2+7) . ( x2-49) >0
tìm x 4x mũ 2 - 49 = 0 câu thứ 2 x mũ 2 +36 =12x câu thứ 3 10 (x-5) -8x (5-x0 =0
1. \(4x^2-49=0\)
\(\Leftrightarrow\left(2x+7\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+7=0\Leftrightarrow x=-\dfrac{7}{2}\\2x-7=0\Leftrightarrow x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy: \(x=-\dfrac{7}{2}\) hoặc \(x=\dfrac{7}{2}\)
===========
2. \(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x=6\)
Vậy: \(x=6\)
===========
3. \(10\left(x-5\right)-8x\left(5-x\right)=0\)
\(\Leftrightarrow10\left(x-5\right)+8x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(10+8x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\Leftrightarrow x=5\\10+8x=0\Leftrightarrow x=-\dfrac{5}{4}\end{matrix}\right.\)
Vậy: \(x=5\) hoặc \(x=-\dfrac{5}{4}\)
1: Ta có: \(4x^2-49=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
2: Ta có: \(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x-6=0\)
hay x=6
Bài 1: Phân tích nhân tử
a. 16a^2 - 49( b - c)^2
b. (ax + by)^2 - (ax - by)^2
c. a^6 - 1
d. a^8 - b^8
Bài 2:Tìm x biết
a. (x - 4)^2 - 36 =0
b. (x + 8)^2 = 121
c. x^2 + 8x +16 =0
d. 4x^2 - 12x = -9
a. 16a2 - 49.( b - c )2
= ( 4a )2 - 72.( b - c )2
= ( 4a )2 - [ 7.( b - c ) ]2
= ( 4a )2 - ( 7b - 7c )2
= ( 4a - 7b + 7c ).( 4a + 7b - 7c )
b. ( ax + by )2 - ( ax - by )2
=( ax + by + ax - by ).( ax + by - ax + by )
= 2ax . 2by
= 2.( ax + by )
c.a6 - 1
= ( a3 )2 - 1
= ( a3 - 1 ).( a3 + 1 )
= ( a - 1 ).( a2 + a + 1 ).( a + 1 ).( a2 - a + 1 )
d. a8 - b8
= ( a4 )2 - ( b4 )2
= ( a4 - b4 ).( a4 + b4 )
= [ ( a2 )2 - ( b2 )2 ].( a4 + b4 )
= ( a2 - b2 ).( a2 + b2 ).( a4 + b4 )
= ( a - b ).( a + b ).( a2 + b2 ).( a4 + b4 )
B2
( x - 4 )2 - 36 = 0
\(\Leftrightarrow\) ( x - 4 )2 = 36
\(\Leftrightarrow\) ( x - 4 )2 = 62
\(\Leftrightarrow\) x + 4 = \(\pm\) 6
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+4=6\\x+4=-6\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)
Vậy x = 10 , x = -2
b. ( x - 8 )2 = 121
\(\Leftrightarrow\) ( x - 8 )2 = 112
\(\Leftrightarrow\) x - 8 = \(\pm\)11
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-8=11\\x-8=-11\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=19\\x=-3\end{cases}}\)
Vậy x = 19 , x = -3
c. x2 + 8x + 16 = 0
\(\Leftrightarrow\)x2 + 2.4x + 42 = 0
\(\Leftrightarrow\) ( x + 4 )2 = 0
\(\Leftrightarrow\) x + 4 = 0
\(\Leftrightarrow\) x = -4
Vậy x = -4
d. 4x2 - 12x = - 9
\(\Leftrightarrow\)( 2x )2 - 2.2.x.3 + 32 = 0
\(\Leftrightarrow\) ( 2x - 3 )2 = 0
\(\Leftrightarrow\) 2x - 3 = 0
\(\Leftrightarrow\) 2x = 3
\(\Leftrightarrow\) \(x=\frac{3}{2}\)
Vậy x = \(\frac{3}{2}\)
BT9: Tìm x biết
\(5,4x^2-36=0\)
\(6,4x^2-36=0\)
\(7,\left(3x+1\right)^2-16=0\)
\(8,\left(2x-3\right)^2-49=0\)
\(5,4x^2-36=0\\ \Leftrightarrow\left(2x\right)^2-6^2=0\\ \Leftrightarrow\left(2x-6\right)\left(2x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{3;-3\right\}\)
\(7,\left(3x+1\right)^2-16=0\\ \Leftrightarrow\left(3x+1\right)^2-4^2=0\\ \Leftrightarrow\left(3x+1-4\right)\left(3x+1+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-3=0\\3x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
Vậy \(S=\left\{1;-\dfrac{5}{3}\right\}\)
\(8,\left(2x-3\right)^2-49=0\\ \Leftrightarrow\left(2x-3\right)^2-7^2=0\\ \Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-10=0\\2x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{-2;5\right\}\)