Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Ngọc Tuyết Nhung
Xem chi tiết
Cold Boy
Xem chi tiết
toan bai kho
Xem chi tiết
Cold Wind
Xem chi tiết
Kiệt ღ ๖ۣۜLý๖ۣۜ
27 tháng 6 2016 lúc 10:46

xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z2)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)

Cold Wind
Xem chi tiết
Bùi Thị Vân
27 tháng 6 2016 lúc 10:56

\(xy.\left(x+y\right)+yz.\left(y+z\right)+xz.\left(x+z\right)+2xyz\)
\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)

\(\Leftrightarrow xy\left(x+y\right)+xyz+yz\left(y+z\right)+xyz+xz\left(z+x\right)\)

\(\Leftrightarrow xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)\)

\(\Leftrightarrow y\left(x+y+z\right)\left(x+z\right)+xz\left(x+z\right)\)
\(\Leftrightarrow\left(x+z\right)\left(y\left(z+x\right)+zx\right)\)

\(\Leftrightarrow\left(x+z\right)\left(y+z\right)\left(x+y\right)\)

Võ Đông Anh Tuấn
27 tháng 6 2016 lúc 10:43

\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)

\(=xy.x+xy.y+yz.y+yz.z+xz.x+xz.z+2xyz\)

\(=x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)

yushi hatada
Xem chi tiết
Hoàng Nguyễn Văn
9 tháng 10 2019 lúc 20:48

Đặt x^2+y^2+z^2 =a ; xy+yz+zx=b

=> (x+y+z)^2 =x^2+y^2+z^2+2xy+2yz+2zx =a+2b

Ta có A= (x^2+y^2+z^2)(xy+yz+zx) +(x+y+z)^2

= a(a+2b)+b^2=a^2+2ab+b^2=(a+b)^2

=(x^2+y^2+z^2 +xy+yz+zx)^2

Trần Thanh Tùng
Xem chi tiết
kudo shinichi
16 tháng 12 2018 lúc 21:29

\(xy\left(x-y\right)-xz\left(x+z\right)+yz\left(2x-y+z\right)\)

\(=xy\left(x-y\right)-xz\left(x+z\right)+yz\left[\left(x-y\right)+\left(x+z\right)\right]\)

\(=xy\left(x-y\right)-xz\left(x+z\right)+yz\left(x-y\right)+yz\left(x+z\right)\)

\(=\left(x-y\right)\left(xy+yz\right)+\left(x+z\right)\left(yz-xz\right)\)

\(=y\left(x-y\right)\left(x+z\right)-z\left(x+z\right)\left(x-y\right)\)

\(=\left(x-y\right)\left(x+z\right)\left(y-z\right)\)

giang đào phương
Xem chi tiết
Edogawa Conan
2 tháng 7 2021 lúc 10:21

a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz

= xy(X + y + z)  + yz(x + y + z) + xz(X + y + z)

= (x + y +z)(xy + yz+ xz)

b) xy(x + y) - yz(y + z) - xz(z - x)

= x2y + xy2 - y2z - yz2 - xz2 + x2z

= x2(y + z) - yz(y + z) + x(y2 - z2)

= x2(y + z) - yz(y + z) + x(y + z)(y - z)

= (y + z)(x2 - yz + xy - xz)

= (y + z)[x(x + y) - z(x + y)]

= (y + z)(x + y)(x - z)

c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)

 = x(y - z)(y + z) + yz2 - yx2 + x2z - y2z

= x(y - z)(y + z) - yz(y - z) - x2(y - z)

= (y - z)((xy + xz - yz - x2)

= (y - z)[x(y - x) - z(y - x)]

= (y - z)(x - z)(y -x) 

Khách vãng lai đã xóa
Nguyễn Anh Dũng An
Xem chi tiết