Chứng minh các biểu thức sau luôn luôn có giá trị âm với mọi giác trị của biến
a) \(-9x^2+12x-15\)
Chứng minh rằng biểu thức sau luôn luôn có giá trị âm với mọi giá trị của biến :
\(-9x^2\)+\(12x\)\(-15\)
chứng minh biểu thức sau luôn có giá trị âm với mọi giá trị cảu biến
a) M= -9x^3+12x-15
b) N= -5-(x-1).(x+2)
Chứng minh giá trị của biểu thức sau luôn âm với mọi giá trị của biến:
a)-9x2+12x-15
b)-5-(x-1)(x+2)
GIÚP MK NHA MK ĐANG CẦN GẤP!
\(-9x^2+12x-15=\left(-11\right)-\left(9x^2-12x+4\right)=\left(-11\right)-\left(3x-2\right)^2\le-11< 0\)
\(-5-\left(x-1\right).\left(x+2\right)=-5-\left(x^2+x-2\right)=-\left(x^2+x+3\right)=-\left(\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\right)\le-\frac{11}{4}< 0\)
Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) 1/4 x -x² +2 b) 3x + 2x² +1 c) 9x² -12x + 5 d) ( x+2)² +(x-2)²
a: Sửa đề: 1/4x+x^2+2
x^2+1/4x+2
=x^2+2*x*1/8+1/64+127/64
=(x+1/8)^2+127/64>=127/64>0 với mọi x
=>ĐPCM
b: 2x^2+3x+1
=2(x^2+3/2x+1/2)
=2(x^2+2*x*3/4+9/16-1/16)
=2(x+3/4)^2-1/8
Biểu thức này ko thể luôn dương nha bạn
c: 9x^2-12x+5
=9x^2-12x+4+1
=(3x-2)^2+1>=1>0 với mọi x
d: (x+2)^2+(x-2)^2
=x^2+4x+4+x^2-4x+4
=2x^2+8>=8>0 với mọi x
Bài 6.CMR các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) – 9x^2 + 12x – 15
b) –2x^2+4x-9
c) xy-x^ 2 -y 2 -1
d) 17- x^ 2 - 5y^ 2 + 2xy -12y
a) \(-9x^2+12x-15=-\left(9x^2-12x+4\right)-11=-\left(3x-2\right)^2-11\le11< 0\)
b) \(-2x^2+4x-9=-2\left(x^2-2x+1\right)-7=-2\left(x-1\right)^2-7\le-7< 0\)
c) \(xy-x^2-y^2-1=-\dfrac{1}{2}\left(2x^2+2y^2-2xy+2\right)=-\dfrac{1}{2}\left[\left(x-y\right)^2+x^2+y^2+2\right]< 0\)
a.chứng minh rằng biểu thức P=5x(2-x)-(x+1)(x+9) luôn nhận giá trị âm với mọi giá trị của biến x.
b. chứng minh rằng biểu thức Q=3x2+x(x-4y)-2x(6-2y)+12x+1 luôn nhận giá trị dương với mọi giá trị của biến x và y
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
chứng minh rằng các biểu thức sau luôn luôn có giá trị âm với mọi giá trị của biến: 3x-7-x^2
giúp mik với mik cần rất gấp
\(A=-x^2+3x-7\)
\(=-\left(x^2-3x+7\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}< 0\forall x\)
\(3x-7-x^2=-\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{19}{4}=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}\le-\dfrac{19}{4}< 0\)
cmr các biểu thức sau luôn có giá trị âm với mọi giá trị của biến
a) -9x^2+12x-15
b) -5-(x-1)(x+2)
a) \(-9x^2+12x-15\)
\(=-9x^2+12x-4-11\)
\(=-\left(9x^2-12x+4\right)-11\)
\(=-\left(3x-2\right)^2-11\)
Có: \(-\left(3x-2\right)^2\ge0\Rightarrow-\left(3x-2\right)^2-11\le-11\)
\(\Rightarrow-\left(3x-2\right)^2-11< 0\)
b) \(-5-\left(x-1\right)\left(x+2\right)\)
\(=-5-\left(x^2+x-2\right)\)
\(=-5-x^2-x+2\)
\(=-3-x^2-x\)
\(=-\left(3+x^2+x\right)\)
Có: \(x^2+x\ge0\Rightarrow3+x^2+x\ge3\)
\(\Rightarrow-\left(3+x^2+x\right)\le-3\)
\(\Rightarrow-\left(3+x^2+x\right)< 0\)