Cho \(a,b,c\ge0\)và \(\le2\)thỏa mãn : \(a+b+c=3\)
Chứng minh \(a^2+b^2+c^2\le5\)
B1: Cho \(0\le a,b,c\le2\) thỏa mãn \(a+b+c=3\). CMR: \(a^2+b^2+c^2\le5\)
B2: Cho \(a,b\ge0\) thỏa mãn \(a^2+b^2=a+b\). TÌm GTLN \(S=\dfrac{a}{a+1}+\dfrac{b}{b+1}\)
B3: CMR: \(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\forall x\ne y,xy\ne0\)
Bài 3:
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)
Cho ba số a , b , c không âm thỏa mãn \(a,b,c\le2\) và a + b + c = 3 . Chứng minh rằng : \(a^2+b^2+c^2\le5\).
cho 3 số a,b,c sao cho \(0\le a\le2;0\le b\le2;0\le c\le2\)
và a+b+c=3. chứng minh rằng \(a^2+b^2+c^2\le5\)
(Hòa Bình)
Cho \(a,b,c\) là ba số thỏa mãn các điều kiện \(0\le a,b,c\le2\) và \(a+b+c=3\). Chứng minh rằng \(a^2+b^2+c^2\le5\).
(Bình Định)
Cho \(a,b,c\) là ba số dương. Chứng minh bát đẳng thức sau:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge a^3+b^3+c^3\).
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel và bất đẳng thức AM-GM ta có :
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)( đpcm )
Đẳng thức xảy ra <=> a=b=c
Cho \(a,b,c\text{ }\ge0\) thỏa \(a+b+c=3\).Chứng minh:
\(3\le a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)
Ta có:
\(b\ge0\Rightarrow b^3+1\ge1\Rightarrow a\sqrt{b^3+1}\ge a\)
Hoàn toàn tương tự: \(b\sqrt{c^3+1}\ge b\) ;\(c\sqrt{a^3+1}\ge c\)
Cộng vế:
\(P\ge a+b+c=3\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và hoán vị
Lại có:
\(a\sqrt{b^3+1}=a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\dfrac{a\left(b^2+2\right)}{2}\)
Tương tự: \(b\sqrt{c^3+1}\le\dfrac{b\left(c^2+2\right)}{2}\) ; \(c\sqrt{a^3+1}\le\dfrac{c\left(a^2+2\right)}{2}\)
\(\Rightarrow P\le\dfrac{1}{2}\left(ab^2+bc^2+ca^2\right)+a+b+c=\dfrac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)
\(\Rightarrow P\le\dfrac{1}{2}\left(ab^2+bc^2+ca^2+2abc\right)+3\)
Nên ta chỉ cần chứng minh: \(Q=ab^2+bc^2+ca^2+2abc\le4\)
Không mất tính tổng quát, giả sử \(a=mid\left\{a;b;c\right\}\)
\(\Rightarrow\left(a-b\right)\left(a-c\right)\le0\Leftrightarrow a^2+bc\le ab+ac\)
\(\Rightarrow ca^2+bc^2\le abc+ac^2\)
\(\Rightarrow Q\le ab^2+ac^2+2abc=a\left(b+c\right)^2=\dfrac{1}{2}.2a\left(b+c\right)\left(b+c\right)\le\dfrac{1}{54}\left(2a+2b+2c\right)^3=4\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;2;0\right)\) và 1 số hoán vị của chúng
cho \(0\le a\le2,0\le b\le2,0\le c\le2\) và a+b+c=3.chứng minh \(a^2+b^2+c^2\le5\)
\(\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow8-4\left(a+b+c\right)+2\left(ab+bc+ca\right)-abc\ge0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\left(a+b+c\right)-8+abc\)
\(\Leftrightarrow2\left(ab+bc+ca\right)\ge12-8+abc\ge4\)
\(\Rightarrow2\left(ab+bc+ca\right)\ge4\)
\(\Rightarrow-2\left(ab+bc+ca\right)\le-4\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\le9-4=5\)(Đpcm)
Dấu = khi \(\hept{\begin{cases}\left(2-a\right)\left(2-b\right)\left(2-c\right)=0\\abc=0\\a+b+c=3\end{cases}}\)
\(\Rightarrow\left(a;b;c\right)=\left(2;1;0\right)\)và hoán vị.
a = 2 ( t/m )
b = 1 ( t/m )
c = 0 ( t/m )
vậy \(a^2+b^2+c^2\le5\)
Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2\le3\). Chứng minh rằng: \(\sqrt{5a^2+4bc}+2\sqrt{bc}\le5\)
Cho các số thực a,b,c thỏa mãn: \(-1\le a\le2;-1\le b\le2;-1\le c\le2\) và \(a+b+c=0\)
Chứng minh \(a^2+b^2+c^2\le6\)
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)
Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)
=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)0
=>a2+b2+c2 \(\le\)6
Dấu "=" xảy ra <=> (a+1)( a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị