1) Cho a, b, c>0 và a+b+c=3. Chứng minh rằng: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ac}\ge\frac{3}{2}\)
2) Cho a, b, c >0 thỏa mãn: ab+ac+bc+abc=4. Chứng minh rằng: \(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\le3\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Chứng minh rằng :
\(\dfrac{5a^3-b^3}{ab+3a^2}+\dfrac{5b^3-c^3}{bc+3b^2}+\dfrac{5c^3-a^3}{ca+3c^2}\le3\)
cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=2\left(ab+bc+ca\right)\)
chứng minh rằng
\(\sqrt{\frac{ab}{a^2+b^2}}+\sqrt{\frac{bc}{b^2+c^2}}+\sqrt{\frac{ca}{c^2+a^2}}\ge\frac{1}{\sqrt{2}}\)
cho a,b,c>0 thỏa mãn a+b+c=3. chứng minh rằng: \(\left(abc\right)^2\left(a^2+b^2+c^2\right)\le3\)
cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=1\)
Chứng minh rằng \(\sqrt{1-ab}+\sqrt{1-bc}+\sqrt{1-ca}\ge\sqrt{6}\)
Giải giúp mình với.
Cho a,b,c không âm thỏa mãn a^2+b^2+c^2=1.Chứng minh rằng:
\(\sqrt{4+5a}+\sqrt{9+7b}+\sqrt{25+11c}>=11\)
Bài 1: Cho a>0;b>0;c>0 thỏa mãn abc=1. Chứng minh rằng:
a)\(a^3+b^3+c^3\ge a+b+c\)
b) \(a^3+b^3+c^3\ge a^2+b^2+c^2\)
Bài 2: Với mọi a,b,c là các số thực. Chứng minh rằng:
\(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge a +b+c\)
Bài 3: Cho x,y,z là các số thực dương thỏa mãn \(x+y+z\le1\)
Chứng minh rằng: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
giải gấp cho em bài này với ạ
cho a,b,c>0 thỏa mãn a+b+c=3.CM
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le3\sqrt{2}\)
Cho a,b,c > 0 thỏa mãn \(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}=3\). Chứng minh rằng:
\(N=\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}+\dfrac{c^4}{a^2}\ge3\)