So sánh
a) (1+2+3+4+5)^2 và 1^3+2^3+3^3+4^3
b) 14^9 và 16.18.20.22
Bài 1: Cặp phân số sau có bằng nhau không?
a) -4/3 và 12/9
b) -2/3 và -6/8
Bài 2: Tìm x,y biết
a)x/-3=2/y
b) x/-9=-8/y=-10/15
Bài 3: Rút gọn
a) -24/78
b)19.25/28.95
c) 19-19.8/8-27
Bài 4: So sánh
a) -2/3 và 5/-8
b) 398/-412 và -25/-137
c) -14/21 và 60/72
Bài 5: a) Cho A= 5/n-3 Tìm điều kiện của n để A là phân số
b) Cho B= 2n+7/n+3
Tìm giá trị của n để B là sô nguyên
1:
a: Vì \(\dfrac{-4}{3}=\dfrac{-4\cdot3}{3\cdot3}=\dfrac{-12}{9}=\dfrac{12}{9}\\ \Rightarrow\dfrac{-4}{3}=\dfrac{12}{9}\)
b: Vì : \(-2\cdot3=-6\\ -6\cdot8=-48\)
nên 2 p/s ko bằng nhau
So sánh:
a) (1+2+3+4)^2 và 1^3+2^3+3^3+4^3
b) 19^4 và 16.18.20.22
so sánh
a/ (1+2+3+4)^2 và 1^3+2^3+3^+4^3
b/ 19^4 và 16.18.20.22
a: \(\left(1+2+3+4\right)^2=10^2=100\)
\(1^3+2^3+3^3+4^3=1+8+27+64=100\)
Do đó: \(\left(1+2+3+4\right)^2=1^3+2^3+3^3+4^3\)
b: \(19^4=130321\)
\(16\cdot18\cdot20\cdot22=126720\)
mà 130321>126720
nên \(19^4>16\cdot18\cdot20\cdot22\)
SO SÁNH
(1+2+3+4)2 và 1^3+2^3+4^3
19^4 và 16.18.20.22
a) Ta có: (1 + 2 + 3 + 4)^2 = 10^2 = 100
1^3 + 2^3 + 4^3 = 1 + 8 + 64 = 9 + 64 = 75
Vì 100 > 75 nên (1 + 2 + 3 + 4)^2 > 1^3 + 2^3 + 4^3
So sánh
a.2\(\sqrt{29}\) và 3\(\sqrt{13}\)
b.\(\dfrac{5}{4}\)\(\sqrt{2}\) và \(\dfrac{3}{2}\)\(\sqrt{\dfrac{3}{2}}\)
c.5\(\sqrt{2}\) và 4\(\sqrt{3}\)
d.\(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}\) và 6\(\sqrt{\dfrac{1}{37}}\)
a)
Có:
\(2\sqrt{29}=\sqrt{4.29}=\sqrt{116}\\ 3\sqrt{13}=\sqrt{9.13}=\sqrt{117}\)
Vì \(\sqrt{117}>\sqrt{116}\) nên \(3\sqrt{13}>2\sqrt{29}\)
b)
Có:
\(\dfrac{5}{4}\sqrt{2}=\sqrt{\dfrac{25}{16}.2}=\sqrt{\dfrac{25}{8}}\)
\(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}=\sqrt{\dfrac{9}{4}.\dfrac{3}{2}}=\sqrt{\dfrac{27}{8}}\)
Do \(\sqrt{\dfrac{27}{8}}>\sqrt{\dfrac{25}{8}}\) nên \(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}>\dfrac{5}{4}\sqrt{2}\)
c)
Có:
\(5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\)
\(4\sqrt{3}=\sqrt{16.3}=\sqrt{48}\)
Vì \(\sqrt{50}>\sqrt{48}\) nên \(5\sqrt{2}>4\sqrt{3}\)
d)
Có:
\(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}=\sqrt{\dfrac{25}{4}.\dfrac{1}{6}}=\sqrt{\dfrac{25}{24}}\)
\(6\sqrt{\dfrac{1}{37}}=\sqrt{36.\dfrac{1}{37}}=\sqrt{\dfrac{36}{37}}\)
lại có: \(\dfrac{25}{24}>\dfrac{36}{37}\)
\(\Rightarrow\dfrac{5}{2}\sqrt{\dfrac{1}{6}}>6\sqrt{\dfrac{1}{37}}\)
Bài 4: So sánh
a) -2/3 và 5/-8
b) 398/-412 và -25/-137
c) -14/21 và 60/72
a)
\(\dfrac{-2}{3}\)>\(\dfrac{5}{-8}\)
b)
\(\dfrac{398}{-412}\)<\(\dfrac{-25}{-137}\)
c)
\(\dfrac{-14}{21}\)<\(\dfrac{60}{72}\)
Bài 4: So sánh
a) -2/3 và 5/-8
b) 398/-412 và -25/-137
c) -14/21 và 60/72
giải chi tiết
So sánh
( 1+2+3+4)^2 và 1^2+2^2+3^2+4^2
19^4 và 16.18.20.22
10^30 và 2^100
So sánh
( 1+2+3+4)^2 và 1^2+2^2+3^2+4^2
19^4 và 16.18.20.22
10^30 và 2^100