tìm 4 số nguyên dương liên tiết sao cho tích của chúng là 120
tìm tổng của 4 số nguyên dương liên tiếp biết tích của chúng bằng 120
Tìm 4 số nguyên dương liên tiếp biết răng tích của chúng bằng 120
Ta có 3.4.5.6=120.3>120
→→ 4 số nguyên liên0 tiếp này có số bé nhất <3
mà 1.2.3.4=24 <120
→4→4 số nguyên lien tiếp này có số bé nhất >1
→4→4 só đó là2,3,4,52,3,4,5
k mk nha!!
Ta có: \(3.4.5.6=120.3>120\)
\(\rightarrow\)4 số nguyên tiếp này có số bé nhất bé hơn 3 mà \(1.2.3.4=24< 120\)
\(\rightarrow\)4 số nguyên liên tiếp này có số bé nhất > 1
\(\rightarrow\)4 số đó là \(2;3;4;5\)
Tìm 4 số nguyên dương liên tiếp biết rằng tích của chúng bằng 120
Gọi 4 số nguyên dương lần lượt là a,a+1,a+2,a+3
Ta có:a.(a+1).(a+2).(a+3)=120
<=>(a.(a+3)).((a+1).(a+2))=120
<=>(a^2+3a).(a^2+3a+2)=120
<=>(a^2+3a+1-1).(a^2+3a+1+1)=120
Đặt;x=a^2+3a+1
Lại có:(x-1).(x-1)=120
<=>x^2-1^2=120
<=>x^2=121
<=>x=11
<=>a^2+3a+1=11
<=>a^2+3a-10=0
<=>(a-2).(a+5)=10
<=>a=2
Vậy 4 số nguyên dương liên tiếp đó là 2;3;4;5
Giả sử số hạng đầu tiên của số nguyên dương đó là x;(x>0)
Yêu cầu bài toán ⇔x(x+1)(x+2)(x+3)=120
⇔x4+6x3+11x2+6x−120=0
⇔(x2+3x−10)(x2+3x+12)=0
⇒x=2
Vậy 44 số nguyên dương liên tiếp biết tích của chúng bằng 120: 2;3;4;5
Tìm 4 số nguyên dương liên tiếp biết rằng tích của chúng bằng 120
Ta thấy 120 có các ước như sau :
A = { 1 ; 2 ; 4 ; 8 ; 16 ; 60 ; 30 ; 20 ; 10 ; 40 ; 120 ; 5 }
Đặt 4 số lần lượt là a , b , c , d.
Ta thấy : 120 = 60 . 2 = 10 . 6 . 2 = 10 . 3 . 2 . 2 = 10 . 3 . 4 = 5 . 2 . 3 . 4
Vậy 4 số cần tìm là 5 , 2 , 3 và 4.
Gọi 4 số nguyên dương cần tìm là x, x+1, x+2, x+3 ( x > 0 )
Tích của chúng = 120
=> x( x + 1 )( x + 2 )( x + 3 ) = 120
=> [ x( x + 3 ) ][ ( x + 1 )( x + 2 ) ] - 120 = 0
=> ( x2 + 3x )( x2 + 3x + 2 ) - 120 = 0 (*)
Đặt t = x2 + 3x
(*) <=> t( t + 2 ) - 120 = 0
<=> t2 + 2t - 120
<=> t2 - 10t + 12t - 120 = 0
<=> t( t - 10 ) + 12( t - 10 ) = 0
<=> ( t - 10 )( t + 12 ) = 0
<=> ( x2 + 3x - 10 )( x2 + 3x + 12 ) = 0
Vì x2 + 3x + 12 = ( x2 + 3x + 9/4 ) + 39/4 = ( x + 3/2 )2 + 39/4 ≥ 39/4 > 0 ∀ x
=> x2 + 3x - 10 = 0
=> x2 - 2x + 5x - 10 = 0
=> x( x - 2 ) + 5( x - 2 ) = 0
=> ( x - 2 )( x + 5 ) = 0
=> x = 2 ( tm ) hoặc x = -5 ( ktm )
=> x + 1 = 3 ; x + 2 = 4 ; x + 3 = 5
Vậy bốn số cần tìm là 2 ; 3 ; 4 ; 5
Hơi dài một tí (:
Gọi 4 số nguyên dương cần tìm là a , a + 1 , a + 2 , a + 3
Theo đề bài ta có : a(a + 1)(a + 2)(a + 3) = 120
=> a(a + 3)(a + 1)(a + 2) = 120
=> (a2 + 3a)(a2 + 3a + 2) = 120
Đặt a2 + 3a = t
=> t(t + 2) = 120
=> t2 + 2t = 120
=> t2 + 2t - 120 = 0
=> (t2 + 2t +1) - 121 = 0
=> (t + 1)2 - 121 = 0
=> (t + 1)2 = 121 = 112
=> t + 1 = 11 => t = 10
+) Lại có : a2 + 3a = t
=> a2 + 3a - 10 = 0
=> a2 - 2a + 5a - 10 = 0
=> a(a - 2) + 5(a - 2) = 0
=> (a - 2)(a + 5) = 0
=> a = 2 hoặc a = -5
Loại a = -5 vì 4 số liên tiếp đều là nguyên dương
+) a + 1 = 2 + 1 = 3
+) a + 2 = 2 + 2 = 4
+) a + 3 = 2 + 3 = 5
Vậy : ....
Tìm bốn số nguyên dương liên tiếp, biết rằng tích của chúng bằng 120.
Anh sẽ làm cách lớp 6 nha!
Gọi 4 số tự nhiên liên tiếp cần tìm là k; k+1; k+2; k+3 (k:nguyên,dương)
Tích chúng bằng 120 nên ta suy ra:
\(k;k+1;k+2;k+3\inƯ\left(120\right)=\left\{1;2;3;4;5;6;8;10;12;15;20;24;30;40;60;120\right\}\)
ước của 120 mà là 4 số tự nhiên liên tiếp:
TH1: 1 x 2 x 3 x 4 = 24 (loại)
TH2: 2 x 3 x 4 x 5 = 120 (nhận)
TH3: 3 x 4 x 5 x 6 = 360 (loại)
Vậy 4 số cần tìm là 2;3;4;5
Gọi 4 số nguyên dương lần lượt là a,a+1,a+2,a+3
Ta có:a.(a+1).(a+2).(a+3)=120
<=>(a.(a+3)).((a+1).(a+2))=120
<=>(a^2+3a).(a^2+3a+2)=120
<=>(a^2+3a+1-1).(a^2+3a+1+1)=120
Đặt;x=a^2+3a+1
Lại có:(x-1).(x-1)=120
<=>x^2-1^2=120
<=>x^2=121
<=>x=11
<=>a^2+3a+1=11
<=>a^2+3a-10=0
<=>(a-2).(a+5)=10
<=>a=2
Vậy 4 số nguyên dương liên tiếp đó là 2;3;4;5
Tìm bốn số nguyên dương liên tiếp, biết rằng tích của chúng bằng 120 giúp mình vs
tk
Gọi 4 số nguyên dương lần lượt là a,a+1,a+2,a+3
Ta có:a.(a+1).(a+2).(a+3)=120
<=>(a.(a+3)).((a+1).(a+2))=120
<=>(a^2+3a).(a^2+3a+2)=120
<=>(a^2+3a+1-1).(a^2+3a+1+1)=120
Đặt;x=a^2+3a+1
Lại có:(x-1).(x-1)=120
<=>x^2-1^2=120
<=>x^2=121
<=>x=11
<=>a^2+3a+1=11
<=>a^2+3a-10=0
<=>(a-2).(a+5)=10
<=>a=2
Vậy 4 số nguyên dương liên tiếp đó là 2;3;4;5
Gọi 4 số nguyên dương liên tiếp theo thứ tự tăng dần lần lượt là: a,a+1,a+2,a+3
Theo đề bài ta có:
\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)=120\)
\(\Leftrightarrow a^4+6a^3+11a^2+6a-120=0\)
\(\Leftrightarrow\left(a-2\right)\left(a+5\right)\left(x^2+3x+12\right)=0\)
\(\Leftrightarrow a=2\)( do a là số nguyên dương)
Vậy 4 số nguyên dương liên tiếp đó lần lượt là: \(2,3,4,5\)
Tìm 4 số nguyên tố liên tiếp sao cho tổng của chúng cũng là số nguyên tố .
( hướng dẫn chi tiết với )
tìm 3 số nguyên dương liên tiếp sao cho tổng của chug bằng tích của chúng
bài 1:CMR:5n3+15n2+10n chia hết cho 30 với mọi n thuộc Z
bài 2:tìm 4 số nguyên dương liên tiếp, biết rằng tích của chúng =120
\(Ta\)\(có\): \(5n^3+15n+10n=5n\left(n^2+3n+2\right)\)
\(=5n\left[\left(n^2+n\right)+\left(2n+2\right)\right]=5n\left[n\left(n+1\right)+2\left(n+1\right)\right]\)
\(=5n\left(n+1\right)\left(n+2\right)\)
\(Vì\)\(n\left(n+1\right)\left(n+2\right)⋮6\)\(và\) \(5⋮5\)
\(nên\) \(5n\left(n+1\right)\left(n+2\right)⋮\left(5.6\right)\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\left(đpcm\right)\)
Bài 1:
\(5n^3+15n^2+10n=5n\left(n^2+3n+2\right)=5n\left[\left(n^2+n\right)+\left(2n+2\right)\right]\)
\(=5n\left[n\left(n+1\right)+2\left(n+1\right)\right]=5n\left(n+1\right)\left(n+2\right)\)
Vì \(n\), \(n+1\)là 2 số nguyên liên tiếp
\(\Rightarrow n\left(n+1\right)⋮2\)\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮2\)(1)
Vì \(n\), \(n+1\), \(n+2\)là 3 số nguyên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)(2)
Vì \(\left(2;3\right)=1\)(3)
Từ (1), (2) và (3) \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)
\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\)
\(\Rightarrow5n^3+15n^2+10n⋮30\)( đpcm )
Bài 2:
Gọi 4 số nguyên dương liên tiếp là \(a\), \(a+1\), \(a+2\), \(a+3\)( \(a\inℕ^∗\))
Theo bài, ta có: \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)=120\)
\(\Leftrightarrow a\left(a+3\right)\left(a+1\right)\left(a+2\right)=120\)
\(\Leftrightarrow\left(a^2+3a\right)\left(a^2+3a+2\right)=120\)
Đặt \(a^2+3a+1=t\)
\(\Rightarrow\left(t-1\right)\left(t+1\right)=120\)\(\Leftrightarrow t^2-1-120=0\)
\(\Leftrightarrow t^2-121=0\)\(\Leftrightarrow\left(t-11\right)\left(t+11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-11=0\\t+11=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=11\\t=-11\end{cases}}\)
+) TH1: Nếu \(t=-11\)\(\Rightarrow a^2+3a+1=-11\)
\(\Leftrightarrow a^2+3a+12=0\)( không có nghiệm nguyên )
+) TH2: Nếu \(t=11\)\(\Rightarrow a^2+3a+1=11\)
\(\Leftrightarrow a^2+3a-10=0\)\(\Leftrightarrow\left(a-2\right)\left(a+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-2=0\\a+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=2\\a=-5\end{cases}}\)
Vì \(a\inℕ^∗\)\(\Rightarrow a=2\)thỏa mãn đề bài
Vậy 4 số nguyên dương cần tìm là 2, 3, 4, 5
1 .tìm số nguyên tố p sao cho p+2 và p+4 cũng là số nguyên tố
2, tìm 4 số nguyên tố liên tiếp sao cho tổng của chúng cũng là số nguyên tố
3, tìm hai số tự nhiên lien tiếp sao cho tổng và tích của chúng cũng là số nguyên tố
Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)
* Nếu p=3 => p+2=3+2=5 là số nguyên tố
=> p+4=3+4=7 là số nguyên tố
=> p=3 thỏa mãn đề bài
* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)
* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)
Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)
* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)
Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)
Vậy p=3 thỏa mãn đề bài