Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Thị Ngọc Án
Xem chi tiết
lê song trí
20 tháng 12 2015 lúc 18:50

tổng bằng 14

 

Trần Thị My
Xem chi tiết
Tamako cute
28 tháng 6 2016 lúc 19:47

Ta có 3.4.5.6=120.3>120
→→ 4 số nguyên liên0 tiếp này có số bé nhất <3
mà 1.2.3.4=24 <120
→4→4 số nguyên lien tiếp này có số bé nhất >1
→4→4 só đó là2,3,4,52,3,4,5

k mk nha!!

Đinh Thùy Linh
28 tháng 6 2016 lúc 19:49

2x3x4x5=120.

VICTORY_Trần Thạch Thảo
28 tháng 6 2016 lúc 19:52

Ta có: \(3.4.5.6=120.3>120\)

\(\rightarrow\)4 số nguyên tiếp này có số bé nhất bé hơn 3 mà \(1.2.3.4=24< 120\)

\(\rightarrow\)4 số nguyên liên tiếp này có số bé nhất > 1

\(\rightarrow\)4 số đó là \(2;3;4;5\)

❤  Hoa ❤
Xem chi tiết
Hoàng Thế Hải
10 tháng 10 2018 lúc 12:43

Gọi 4 số nguyên dương lần lượt là a,a+1,a+2,a+3 
Ta có:a.(a+1).(a+2).(a+3)=120 
<=>(a.(a+3)).((a+1).(a+2))=120 
<=>(a^2+3a).(a^2+3a+2)=120 
<=>(a^2+3a+1-1).(a^2+3a+1+1)=120 
Đặt;x=a^2+3a+1 
Lại có:(x-1).(x-1)=120 
<=>x^2-1^2=120 
<=>x^2=121 
<=>x=11 
<=>a^2+3a+1=11 
<=>a^2+3a-10=0 
<=>(a-2).(a+5)=10 
<=>a=2 
Vậy 4 số nguyên dương liên tiếp đó là 2;3;4;5

Tập-chơi-flo
2 tháng 12 2018 lúc 7:54

Giả sử số hạng đầu tiên của số nguyên dương đó là x;(x>0)

Yêu cầu bài toán ⇔x(x+1)(x+2)(x+3)=120
⇔x4+6x3+11x2+6x−120=0

⇔(x2+3x−10)(x2+3x+12)=0

⇒x=2

Vậy 44 số nguyên dương liên tiếp biết tích của chúng bằng 120: 2;3;4;5

Thủy Lê
Xem chi tiết
The Angry
18 tháng 10 2020 lúc 9:58

Ta thấy 120 có các ước như sau :

A = { 1 ; 2 ; 4 ; 8 ; 16 ; 60 ; 30 ; 20 ; 10 ; 40 ; 120 ; 5 }

Đặt 4 số lần lượt là a , b , c , d.

Ta thấy : 120 = 60 . 2 = 10 . 6 . 2 = 10 . 3 . 2 . 2 = 10 . 3 . 4 = 5 . 2 . 3 . 4

Vậy 4 số cần tìm là 5 , 2 , 3 và 4.

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
18 tháng 10 2020 lúc 10:01

Gọi 4 số nguyên dương cần tìm là x, x+1, x+2, x+3 ( x > 0 )

Tích của chúng = 120

=> x( x + 1 )( x + 2 )( x + 3 ) = 120

=> [ x( x + 3 ) ][ ( x + 1 )( x + 2 ) ] - 120 = 0

=> ( x2 + 3x )( x2 + 3x + 2 ) - 120 = 0 (*)

Đặt t = x2 + 3x 

(*) <=> t( t + 2 ) - 120 = 0

     <=> t2 + 2t - 120

     <=> t2 - 10t + 12t - 120 = 0

     <=> t( t - 10 ) + 12( t - 10 ) = 0

     <=> ( t - 10 )( t + 12 ) = 0

     <=> ( x2 + 3x - 10 )( x2 + 3x + 12 ) = 0

Vì x2 + 3x + 12 = ( x2 + 3x + 9/4 ) + 39/4 = ( x + 3/2 )2 + 39/4 ≥ 39/4 > 0 ∀ x

=> x2 + 3x - 10 = 0

=> x2 - 2x + 5x - 10 = 0

=> x( x - 2 ) + 5( x - 2 ) = 0

=> ( x - 2 )( x + 5 ) = 0

=> x = 2 ( tm ) hoặc x = -5 ( ktm )

=> x + 1 = 3 ; x + 2 = 4 ; x + 3 = 5

Vậy bốn số cần tìm là 2 ; 3 ; 4 ; 5 

Hơi dài một tí (:

Khách vãng lai đã xóa
Huỳnh Quang Sang
18 tháng 10 2020 lúc 10:03

Gọi 4 số nguyên dương cần tìm là a , a + 1 , a + 2 , a + 3

Theo đề bài ta có : a(a + 1)(a + 2)(a + 3) = 120

=> a(a + 3)(a + 1)(a + 2) = 120

=> (a2 + 3a)(a2 + 3a + 2) = 120

Đặt a2 + 3a = t

=> t(t + 2) = 120

=> t2 + 2t = 120

=> t2 + 2t - 120 = 0

=> (t2 + 2t +1) - 121 = 0

=> (t + 1)2 - 121 = 0

=> (t + 1)2 = 121 = 112

=> t + 1 = 11 => t = 10 

+) Lại có : a2 + 3a = t

=> a2 + 3a - 10 = 0

=> a2 - 2a + 5a - 10 = 0

=> a(a - 2) + 5(a - 2) = 0

=> (a - 2)(a + 5) = 0

=> a = 2 hoặc a = -5

Loại a = -5 vì 4 số liên tiếp đều là nguyên dương

+) a + 1 = 2 + 1 = 3

+) a + 2 = 2 + 2 = 4

+) a + 3 = 2 + 3 = 5

Vậy : ....

Khách vãng lai đã xóa
Khiêm Nguyễn Gia
Xem chi tiết

Anh sẽ làm cách lớp 6 nha!

Gọi 4 số tự nhiên liên tiếp cần tìm là k; k+1; k+2; k+3 (k:nguyên,dương)

Tích chúng bằng 120 nên ta suy ra:

\(k;k+1;k+2;k+3\inƯ\left(120\right)=\left\{1;2;3;4;5;6;8;10;12;15;20;24;30;40;60;120\right\}\)

ước của 120 mà là 4 số tự nhiên liên tiếp:

TH1: 1 x 2 x 3 x 4 = 24 (loại)

TH2: 2 x 3 x 4 x 5 = 120 (nhận)

TH3: 3 x 4 x 5 x 6 = 360 (loại)

Vậy 4 số cần tìm là 2;3;4;5

 

Phùng Thị Ngân
2 tháng 8 2023 lúc 9:35

Gọi 4 số nguyên dương lần lượt là a,a+1,a+2,a+3 
Ta có:a.(a+1).(a+2).(a+3)=120 
<=>(a.(a+3)).((a+1).(a+2))=120 
<=>(a^2+3a).(a^2+3a+2)=120 
<=>(a^2+3a+1-1).(a^2+3a+1+1)=120 
Đặt;x=a^2+3a+1 
Lại có:(x-1).(x-1)=120 
<=>x^2-1^2=120 
<=>x^2=121 
<=>x=11 
<=>a^2+3a+1=11 
<=>a^2+3a-10=0 
<=>(a-2).(a+5)=10 
<=>a=2 
Vậy 4 số nguyên dương liên tiếp đó là 2;3;4;5

Nguyễn Nhân Dương
2 tháng 8 2023 lúc 9:35

2x3x4x5

bùi quang khải
Xem chi tiết
Cao ngocduy Cao
16 tháng 9 2021 lúc 9:02

tk

Gọi 4 số nguyên dương lần lượt là a,a+1,a+2,a+3 
Ta có:a.(a+1).(a+2).(a+3)=120 
<=>(a.(a+3)).((a+1).(a+2))=120 
<=>(a^2+3a).(a^2+3a+2)=120 
<=>(a^2+3a+1-1).(a^2+3a+1+1)=120 
Đặt;x=a^2+3a+1 
Lại có:(x-1).(x-1)=120 
<=>x^2-1^2=120 
<=>x^2=121 
<=>x=11 
<=>a^2+3a+1=11 
<=>a^2+3a-10=0 
<=>(a-2).(a+5)=10 
<=>a=2 
Vậy 4 số nguyên dương liên tiếp đó là 2;3;4;5

Lấp La Lấp Lánh
16 tháng 9 2021 lúc 9:06

Gọi 4 số nguyên dương liên tiếp theo thứ tự tăng dần lần lượt là: a,a+1,a+2,a+3

Theo đề bài ta có:

\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)=120\)

\(\Leftrightarrow a^4+6a^3+11a^2+6a-120=0\)

\(\Leftrightarrow\left(a-2\right)\left(a+5\right)\left(x^2+3x+12\right)=0\)

\(\Leftrightarrow a=2\)( do a là số nguyên dương)

Vậy 4 số nguyên dương liên tiếp đó lần lượt là: \(2,3,4,5\)

MrDeath VN
Xem chi tiết
Nguyễn Thị Huyền Thương
Xem chi tiết
Hồ Lê Ánh Nguyệt
20 tháng 8 2015 lúc 7:48

1;2;3

dung nha bn

Luong Hong Nhung
13 tháng 3 2016 lúc 13:40

1;2;3 dung 100% luon

hoa bui
Xem chi tiết
Phạm Thị Mỹ Dung
19 tháng 10 2017 lúc 21:42

\(Ta\)\(có\)\(5n^3+15n+10n=5n\left(n^2+3n+2\right)\)

                 \(=5n\left[\left(n^2+n\right)+\left(2n+2\right)\right]=5n\left[n\left(n+1\right)+2\left(n+1\right)\right]\)

                 \(=5n\left(n+1\right)\left(n+2\right)\)

\(Vì\)\(n\left(n+1\right)\left(n+2\right)⋮6\)\(và\) \(5⋮5\)

\(nên\) \(5n\left(n+1\right)\left(n+2\right)⋮\left(5.6\right)\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\left(đpcm\right)\)

hoa bui
21 tháng 10 2017 lúc 19:41

bạn giúp mk bài 2 nx

Nobi Nobita
18 tháng 10 2020 lúc 10:10

Bài 1:

 \(5n^3+15n^2+10n=5n\left(n^2+3n+2\right)=5n\left[\left(n^2+n\right)+\left(2n+2\right)\right]\)

\(=5n\left[n\left(n+1\right)+2\left(n+1\right)\right]=5n\left(n+1\right)\left(n+2\right)\)

Vì \(n\)\(n+1\)là 2 số nguyên liên tiếp 

\(\Rightarrow n\left(n+1\right)⋮2\)\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮2\)(1)

Vì \(n\)\(n+1\)\(n+2\)là 3 số nguyên liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)(2)

Vì \(\left(2;3\right)=1\)(3)

Từ (1), (2) và (3) \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)

\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\)

\(\Rightarrow5n^3+15n^2+10n⋮30\)( đpcm )

Bài 2:

Gọi 4 số nguyên dương liên tiếp là \(a\)\(a+1\)\(a+2\)\(a+3\)\(a\inℕ^∗\))

Theo bài, ta có: \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)=120\)

\(\Leftrightarrow a\left(a+3\right)\left(a+1\right)\left(a+2\right)=120\)

\(\Leftrightarrow\left(a^2+3a\right)\left(a^2+3a+2\right)=120\)

Đặt \(a^2+3a+1=t\)

\(\Rightarrow\left(t-1\right)\left(t+1\right)=120\)\(\Leftrightarrow t^2-1-120=0\)

\(\Leftrightarrow t^2-121=0\)\(\Leftrightarrow\left(t-11\right)\left(t+11\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-11=0\\t+11=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=11\\t=-11\end{cases}}\)

+) TH1: Nếu \(t=-11\)\(\Rightarrow a^2+3a+1=-11\)

\(\Leftrightarrow a^2+3a+12=0\)( không có nghiệm nguyên )

+) TH2: Nếu \(t=11\)\(\Rightarrow a^2+3a+1=11\)

\(\Leftrightarrow a^2+3a-10=0\)\(\Leftrightarrow\left(a-2\right)\left(a+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-2=0\\a+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=2\\a=-5\end{cases}}\)

Vì \(a\inℕ^∗\)\(\Rightarrow a=2\)thỏa mãn đề bài 

Vậy 4 số nguyên dương cần tìm là 2, 3, 4, 5

Khách vãng lai đã xóa
nguyễn thu hiền
Xem chi tiết
Phạm Thị Thanh Thảo
14 tháng 4 2023 lúc 20:16

Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)

* Nếu p=3 => p+2=3+2=5 là số nguyên tố 

                 => p+4=3+4=7 là số nguyên tố

=> p=3 thỏa mãn đề bài

* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)

* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)

Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)

* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)

Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)

Vậy p=3 thỏa mãn đề bài