Cho A = (1 - 4/ √x + 1 +1/ x+1 ). x-2√x / x-1
Với x > 0 , x khác 4
a, rut gon A
b, Tìm x để A = 1/2
1) CMR: 543-54 khong la so chinh phuong
2) Tim x:
2(x-2).(x+3)-x2+4=0
3) Rut gon
a)2(x+1)2-3(x-1)2+(x+2).(5-x)
b)(3x-1)3+(3x-1)3-6x2+9
4) A= (x-5).(x+2)+3.(x-2).(x+2)-(3x-1)2+5x2
a) rut gon A
b) tinh a khi x =1/2
\(2\left(x-2\right)\left(x+3\right)-x^2+4=0\)
\(2\left(x^2+3x-2x-6\right)-x^2+4=0\)
\(2x^2+6x-4x-12-x^2+4=0\)
\(x^2+2x-8=0\)
\(x^2+4x-2x-8=0\)
\(x\left(x+4\right)-2\left(x+4\right)=0\)
\(\left(x+4\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+4=0\rightarrow x=\left(-4\right)\\x-2=0\rightarrow x=2\end{cases}}\)
3/
a/ \(2\left(x+1\right)^2-3\left(x-1\right)^2+\left(x+2\right)\left(5-x\right)\)
\(=2\left(x^2+2x+1\right)-3\left(x^2-2x+1\right)+\left(5x-x^2+10-2x\right)\)
\(=2x^2+4x+2-3x^2+6x-3+5x-x^2+10-2x\)
\(=-2x^2+13x+9\)
b/ \(\left(3x-1\right)^3+\left(3x-1\right)^3-6x^2+9\)
\(=2\left(3x-1\right)^3-6x^2+9\)
\(=2\left(\left(3x\right)^3-3\left(3x\right)^2\cdot1+3\cdot3x\cdot1-1\right)-6x^2+9\)
\(=2\left(27x^3-27x^2+9x-1\right)-6x^2+9\)
\(=54x^3-54x^2+18x-2-6x^2+9\)
\(=54x^3-60x^2+18x+7\)
Số hơi dài, nên dễ tính sai -,- tính mik hay cẩu thả có j sai ibbb ạ
2) 2.(x - 2).(x + 3) - x2 + 4 = 0
<=> x2 + 2x - 8 = 0
<=> (x - 2).(x + 4) = 0
x - 2 = 0 hoặc x + 4 = 0
x = 0 + 2 x = 0 - 4
x = 2 x = -4
=> x = 2 hoặc x = -4
3) a) 2.(x + 1)2 - 3.(x - 1)2 + (x + 2).(5 - x)
= 2.(x2 + 2x + 1) - 3.(x2 - 2x + 1) + (x + 2).(5 - x)
= 2x2 + 4x + 2 - 3x2 + 6x - 3 + (x + 2).(5 - x)
= 2x2 + 4x + 2 - 3x2 + 6x - 3 + 3x - x2 + 10
= (2x2 - 3x2 - x2) + (4x + 6x + 3x) + (2 - 3 + 10)
= -2x2 + 13x + 9
b) (3x - 1)3 + (3x - 1)3 - 6x2 + 9
= 2.(3x - 1)3 - 6x2 + 9
= 2.(27x3 - 27x2 + 9x - 1) - 6x2 + 9
= 54x3 - 54x2 + 18x - 2 - 6x2 + 9
= 54x3 + (-54x2 - 6x2) + 18x + (-2 + 9)
= 54x3 - 60x + 18x + 7
4) a) A = (x - 5).(x + 2) + 3.(x - 2).(x + 2) - (3x - 1)2 + 5x2
A = (x - 5).(x + 2) + 3.(x - 2).(x + 3) - (9x2 - 6x + 1) + 5x2
A = x2 - 3x - 10 + 3x2 - 12 - (9x2 - 6x + 1) + 5x2
A = x2 - 3x - 10 + 3x2 - 12 - 9x2 + 6x - 1 + 5x2
A = (x2 + 3x2 - 9x2 + 5x2) + (-3x + 6x) + (-10 - 12 - 1)
A = 3x - 23 (1)
b) Thay x = 1/2 vào (1), ta có:
A = 3x - 23 = 3.(1/2) - 23
= 3/2 - 23
= -43/2
A khi x = 1/2 là -43/2
cho M=((x^2-1)/(x^4-x^2+1)-1/(x^2+1))(x^4+(1-x^4)/(1+x^2)) a) rut gon b)tim min
1) CMR: 543-54 khong la so chinh phuong
2) Tim x:
2(x-2).(x+3)-x2+4=0
3) Rut gon
a)2(x+1)2-3(x-1)2+(x+2).(5-x)
b)(3x-1)3+(3x-1)3-6x2+9
4) A= (x-5).(x+2)+3.(x-2).(x+2)-(3x-1)2+5x2
a) rut gon A
b) tinh a khi x =1/2
A= (2/x-√x - 1/√x-1) : x-4/x√x+√x - 2x với x>0, x khác 1, x khác 4 a) rút gọn A b) tìm x để A > -1/2
a: Ta có: \(A=\left(\dfrac{2}{x-\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x-4}{x\sqrt{x}+\sqrt{x}-2x}\)
\(=\dfrac{2-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{x-4}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{-\sqrt{x}+1}{\sqrt{x}+2}\)
cho bieu thuc P=(\(\dfrac{1}{x+2\sqrt{x}}-\dfrac{1}{\sqrt{x}+2}\)): \(\dfrac{1-\sqrt{x}}{x+4\sqrt{x}+4}\) (với x>0, x khác 1)
a. rut gon bieu thuc P
b. Tìm x để P=\(\dfrac{4}{3}\)
a: \(P=\dfrac{1-\sqrt{x}}{\left(\sqrt{x}+2\right)\cdot\sqrt{x}}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}=\dfrac{\sqrt{x}+2}{\sqrt{x}}\)
b: Để P=4/3 thì 4 căn x=3 căn x+6
=>x=36
chỉ mình câu này với
rút gon biểu thức A= x^2+2x/ x^2-4x+4 : ( x+2/x-1/2-x+6-x^2/x^2-2x) với x khác 0,2,-2
rút gọn A
tính giá trị của A biết I 2x +1 I =3
tìm x để A<0 , tìm giá trị x nguyên để A nhận giá trị nguyên , tìm gía trị nhỏ nhất của với x>2
Cho biểu thức:
A = -\(\dfrac{x}{4-x}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\) với x\(\ge\)0,x\(\ne\)4
B = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
a) Rút gon A
b) Tính giá trị của A khi x=36
c) Tìm x để A=-\(\dfrac{1}{3}\)
d) Tìm x nguyên đề để biểu thức A có giá trị nguyên
e) Tìm x để A:B=-2
f) Tìm x để A đạt giá trị nhỏ nhất
\(a,A=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\\ b,x=36\Leftrightarrow A=\dfrac{6}{6-2}=\dfrac{6}{4}=\dfrac{3}{2}\\ c,A=-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=-\dfrac{1}{3}\Leftrightarrow3\sqrt{x}=2-\sqrt{x}\\ \Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\\ d,A\in Z\Leftrightarrow1+\dfrac{2}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0;1;3;4\right\}\\ \Leftrightarrow x\in\left\{0;1;9;16\right\}\)
\(e,A:B=\dfrac{\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}=-2\\ \Leftrightarrow\sqrt{x}=-2\sqrt{x}-2\\ \Leftrightarrow\sqrt{x}=-\dfrac{2}{3}\left(ktm\right)\\ \Leftrightarrow x\in\varnothing\)
a: Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
Cho bieu thuc A=\(\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right)\left(\frac{2}{x}-1\right)\)
Rut gon ATinh gia tri bieu thuc A tai x thoa man :\(2x^2+x=0\)Tim x de A=\(\frac{1}{2}\)4.Tìm x nguyên để A nguyên dương
A=(1/x-2 - (2x/(2-x)(2+x) - 1/2+x) ) *(2-x)/x
=(1/x-2 - x^2+5x-2/(2-x)(2+x))*2-x/x
=(-x^3-4x^2+12x/(x-2)(2-x)(2+x))*2-x/x
= - x(x-2)(x+6)(2-x)/x(x-2)(2-x)(2+x)
= - x+6/x+2
cho bieu thuc \(P=\left(\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}-\frac{1}{\sqrt{x}-1}\right):\left(1+\frac{\sqrt{x}}{x+1}\right)\)
a) rut gon P
b) tìm x để P <= 0
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(P=\left(\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}-\frac{1}{\sqrt{x}-1}\right):\left(1+\frac{\sqrt{x}}{x+1}\right)\)
\(\Leftrightarrow P=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\frac{1}{\sqrt{x}-1}\right):\left(\frac{x+\sqrt{x}+1}{x+1}\right)\)
\(\Leftrightarrow P=\frac{2\sqrt{x}-x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}\cdot\frac{x+1}{x+\sqrt{x}+1}\)
\(\Leftrightarrow P=\frac{-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\frac{-\sqrt{x}+1}{x+\sqrt{x}+1}\)
b) Ta có : \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Để \(P\le0\Leftrightarrow-\sqrt{x}+1\le0\)
\(\Leftrightarrow-\sqrt{x}\le-1\)
\(\Leftrightarrow\sqrt{x}\ge1\)
\(\Leftrightarrow x\ge1\)
Vì đkxđ : \(x\ne1\)
Vậy để \(P\le0\Leftrightarrow x>1\)