Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Phuc Duy
Xem chi tiết
Vũ Tiến Manh
13 tháng 10 2019 lúc 15:10

dk \(x+9\ge0;x\ge0;x+1>0< =>x\ge0;\)

\(\sqrt{x+9}-\sqrt{x}=\frac{2\sqrt{2}}{\sqrt{x+1}}< =>\frac{9}{\sqrt{x+9}+\sqrt{x}}=\frac{2\sqrt{2}}{\sqrt{x+1}}\)<=> \(9\sqrt{x+1}=2\sqrt{2}\left(\sqrt{x+9}+\sqrt{x}\right)< =>\)\(81\left(x+1\right)=16x+72+16\sqrt{x\left(x+9\right)}\)

<=> \(65x+9=16\sqrt{x\left(x+9\right)}\)<=> 4225x2+1170x+81= 256x2+144x <=> 3969x2+1026x+81=0 (vô nghiệm)

King of Alien
Xem chi tiết
Nguyen Phuc Duy
Xem chi tiết
Vũ Tiến Manh
14 tháng 10 2019 lúc 23:45

\(\sqrt{12-\frac{3}{x^2}}=a\left(a\le\sqrt{12}\right);\sqrt{4x^2-\frac{3}{x^2}}=b\left(b\ge0\right)\)

ta có \(\hept{\begin{cases}a+b=4x^2\\b^2-a^2=4x^2-12\end{cases}}\)<=> \(\hept{\begin{cases}a+b=4x^2\\\left(b-a\right)\left(b+a\right)=4x^2-12\end{cases}< =>\hept{\begin{cases}a+b=4x^2\\b-a=\frac{4x^2-12}{4x^2}\end{cases}}}\)

<=> \(\hept{\begin{cases}b+a=4x^2\\b-a=1-\frac{3}{x^2}\end{cases}}< =>\hept{\begin{cases}b+a=4x^2\\2b=4x^2+1-\frac{3}{x^2}=b^2+1\end{cases}}\)<=> \(\hept{\begin{cases}b+a=4x^2\\\left(b-1\right)^2=0\end{cases}=>b=1}\)

=> 4x2-\(\frac{3}{x^2}=1=>4x^4-x^2-3=0< =>x^2=1\)=> x=1 hoặc x=-1

thay vào phương trình ban đầu  đều thỏa mãn => pt có 2 nghiệm x=1; x=-1

Nguyễn Quốc Huy
Xem chi tiết
Le Minh Hieu
Xem chi tiết
Nguyễn Thị Thanh Trang
Xem chi tiết
Le Minh Hieu
Xem chi tiết
Vũ Tiến Manh
15 tháng 10 2019 lúc 11:28

dk \(\hept{\begin{cases}3x^2-1\ge0\\x^2-x\ge0\end{cases}< =>\orbr{\begin{cases}x\ge1\\x\le\frac{-1}{\sqrt{3}}\end{cases}}}\)(1)

\(< =>2\sqrt{6x^2-2}+2\sqrt{2x^2-2x}-2x\sqrt{2x^2+2}\)=7x2-x+4

<=> (3x2-1)-2\(\sqrt{2}.\sqrt{3x^2-1}\)+ 2 + (x2+1)+2x\(\sqrt{2}.\sqrt{x^2+1}\)+2x2 + (x2-x) - 2\(\sqrt{2}\sqrt{x^2-x}\)+2 =0

<=> \(\left(\sqrt{3x^2-1}-1\right)^2+\left(\sqrt{x^2+1}+x\sqrt{2}\right)^2\)+\(\left(\sqrt{x^2-x}-\sqrt{2}\right)^2=0\)

<=> \(\hept{\begin{cases}\sqrt{3x^2-1}=\sqrt{2}\\\sqrt{x^2+1}+x\sqrt{2}=0\\\sqrt{x^2-x}=\sqrt{2}\end{cases}}< =>\hept{\begin{cases}3x^2=3\\x^2+1=2x^2\left(x< 0\right)\\x^2-x-2=0\end{cases}}\)<=> \(\hept{\begin{cases}x^2=1\\\left(x+1\right)\left(x-2\right)=0\end{cases}< =>x=-1}\) (thỏa mãn điều kiện (1)

vậy x=-1 là nghiệm

Họ Và Tên
Xem chi tiết
Edogawa Conan
21 tháng 10 2020 lúc 21:37

Đk: \(\forall x\in R\)

Ta có:\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)

<=> \(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=\sqrt{1+2020^2+2.2020+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(1+2020\right)^2+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(2021-\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\frac{2021^2-2020}{2021}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=2021\)

Lập bảng xét dầu

x                   -2                   1 

x - 1   -         |           -          0       +

x + 2   -        0         +          |            -

Xét các TH xảy ra :

TH1: x \(\le\)-2 => pt trở thành: 1 - x - x - 2 = 2021

<=> -2x = 2022 <=> x = -1011 (tm)

TH2: \(-2< x\le1\) => pt trở thành: 1 - x + x + 2 = 2021

<=> 0x = 2018 (vô lí) => pt vô nghiệm

TH3: \(x>1\) => pt trở thành: x - 1 + x + 2 = 2021

<=> 2x = 2020 <=> x = 1010 (tm)

Vậy S = {-1011; 1010}

Khách vãng lai đã xóa
Nguyễn Thùy Chi
Xem chi tiết