tìm x : x^2-16=0
Tìm x
2x-7+(x-14)=0
x^2-6x=0
(x-3)(16-4x)=0
(x-3)-(16-4x)=0
(x-3)+(16-4x)=0
Mấy câu này khá giống nhau nhé anh (câu 1 giống câu 4 và 5, cấu 2 giống câu 3) =)))
Câu 1: 2x - 7 + (x - 14) = 0
<=> 3x -21 = 0
<=> 3x = 21 => x = 7
Câu 2:
x2 - 6x = 0 <=> x.(x - 6) = 0 => \(\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
Chúc anh học tốt !!!
Câu 1, 2 có người làm rồi nên mik làm tiếp cho mấy câu tiếp. Cứ áp dụng A.B = 0 => A = 0 hoặc B = 0
3; ( x - 3 )( 16 - 4x ) = 0
=> x - 3 = 0 hoặc 16 - 4x = 0
=> x = 3 hoặc x = 4
Vậy x = 3 hoặc x = 4.
4; ( x - 3 ) - ( 16 - 4x ) = 0
=> x - 3 - 16 + 4x = 0
=> ( x + 4x ) - ( 3 + 16 ) = 0
=> 5x - 19 = 0
=> x = 19/5
Vậy x = 19/5
5; ( x + 3 ) + ( 16 - 4x ) = 0
=> x + 3 + 16 - 4x = 0
=> ( x - 4x ) + ( 16 + 3 ) = 0
=> 3x + 19 = 0
=> x = 19/3
Vậy x = 19/3
(x^2-16/25).(x^2-16/9)=0. Tìm x
Tìm \(x\)
a, \(x^2-10x+25=0\)
b, \(x^2-8x+16=0\)
c, \(x^2-49=0\)
d, \(4x^2-25=0\)
`a, x^2-10x+25=0`
`<=>x^2 -2.x.5+5^2=0`
`<=>(x-5)^2=0`
`<=>x-5=0`
`<=>x=5`
__
`x^2 -8x+16=0`
`<=> x^2 - 2.x.4+4^2=0`
`<=>(x-4)^2=0`
`<=>x-4=0`
`<=>x=4`
__
`x^2-49=0`
`<=>x^2 - 7^2=0`
`<=>(x-7)(x+7)=0`
`<=>x-7=0` hoặc `x+7=0`
`<=> x=7` hoặc `x=-7`
__
`4x^2-25=0`
`<=> (2x)^2 -5^2=0`
`<=>(2x-5)(2x+5)=0`
`<=>2x-5=0` hoặc `2x+5=0`
`<=> 2x=5` hoặc `2x=-5`
`<=>x=5/2` hoặc `x=-5/2`
a: =>(x-5)^2=0
=>x-5=0
=>x=5
b: =>(x-4)^2=0
=>x-4=0
=>x=4
c: =>(x-7)(x+7)=0
=>x-7=0 hoặc x+7=0
=>x=7 hoặc x=-7
d: =>(2x-5)(2x+5)=0
=>2x-5=0 hoặc 2x+5=0
=>x=5/2 hoặc x=-5/2
Tìm x biết
( x + 1/2 )^2 -1/16 =0
( 3x + 1/2 )^2 + 25/16 = 0
Ta có: \(\left(x+\frac{1}{2}\right)^2-\frac{1}{16}=0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
Mà \(\frac{1}{16}=\left(\frac{1}{4}\right)^2\)
\(\Rightarrow x+\frac{1}{2}=\frac{1}{4}\Rightarrow x=\frac{-1}{4}\)
Vậy ....
\(\left(3x+\frac{1}{2}\right)^2+\frac{25}{16}=0\)
\(\Rightarrow\left(3x+\frac{1}{2}\right)^2=\frac{-25}{16}\)
Vì \(\left(3x+\frac{1}{2}\right)^2\ge0\left(\forall x\in Z\right)\)
Nên x thuộc rỗng (không có giá trị của x)
a) (x + 1/2)^2 - 1/16 = 0
(x+1/2)^2 = 1/16 = (1/4)^2 = (-1/4)^2
TH1: x + 1/2 = 1/4
x = -1/4
TH2: x + 1/2 = -1/4
x = -3/4
KL:...
b) (3x+1/2)^2 + 25/16 = 0
(3x + 1/2)^2 = -25/16
=> không tìm được x
Tìm x biết: a)x(x-3)+x-3=0 b)(5x-4)^2-16^2=0
Tìm x
a,|x|-15=6 b,|x|+4=0 c,x^2-16=0
a) \(\left|x\right|-15=6\Rightarrow\left|x\right|=21\Rightarrow\left[{}\begin{matrix}x=21\\x=-21\end{matrix}\right.\)
b) \(\left|x\right|+4=0\Rightarrow\left|x\right|=-4\Rightarrow x\in\varnothing\)
c) \(x^2-16=0\Rightarrow x^2=16=4^2\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
a, /x/-15=6
/x/ =6+15
/x/ =21
x =\(\pm\)21
b, /x/+4=0
/x/ =0-4
/x/ =-4
x =4
c, x^2-16=0
x^2 =0+16
x^2 =16
x^2 = (\(\pm\)4)^2
x =\(\pm\) 4
Giúp mk bài này vs mk cảm ơn nhìu
Tìm x : (X^2-9).(x^2+16)<0 và ((X^2-9).(x^2+16)>0
tìm x
x^2 - 16 = 0
\(\left(x-4\right)\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
x^2-16=0
<=> x^2 = 16
<=>x = √16
<=> x = 4 hoặc x = -4
x2 - 16 = x2 - 42 = (x - 4)(x + 4) = 0
=> x = 4 hoặc x =–4
(x = +–4)
Tìm x biết:
a/ 5x( x- 3) = x – 3 b/ x3 - x = 0 c/ x2 – 7x + 6 = 0
d/ x2 – 4 + ( x – 2)2 = 0 e/ x2 – 16 –( x +4) = 0 f/ x2 + x – 2 = 0
a: \(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
b: \(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
BT2: Tìm x 2, 3x(x-4)+2x-8=0 3, 4x(x-3)+x^2-9=0 4, x(x-1)-x^2+3x=0 5, x(2x-1)-2x^2+5x=16
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4