Tìm giá trị nhỏ nhất của A=16x2+24x-5
tìm GTLN của A=-x2-8x+20
B=-16x2+24x-5
Tìm giá trị nhỏ nhất , lớn nhất : C= 16x2 - 8x + 2024
D= -25x2 + 50x - 2023
B=-x2 + 20x + 100
E=(2x - 1 )2 - ( 3 x + 2 ) nhân ( x - 5 )
F=( 3 x - 5 ) 2 - ( 3x + 2 ) nhân ( 4x - 1)
mk đang cần gấp mn giúp mình vs ạ
\(C=16x^2-8x+2024\)
\(\Rightarrow C=16x^2-8x+1+2023\)
\(\Rightarrow C=\left(4x-1\right)^2+2023\ge2023\left(\left(4x-1\right)^2\ge0\right)\)
\(\Rightarrow Min\left(C\right)=2023\)
\(D=-25x^2+50x-2023\)
\(\Rightarrow D=-\left(25x^2-50x+25\right)-1998\)
\(\Rightarrow D=-\left(5x-5\right)^2-1998\le1998\left(-\left(5x-5\right)^2\le0\right)\)
\(\Rightarrow Max\left(D\right)=1998\)
\(B=-x^2+20x+100=-\left(x^2-20x+100\right)+200=-\left(x-10\right)^2+200\le200\left(-\left(x-10\right)^2\le0\right)\)
\(\Rightarrow Max\left(B\right)=200\)
\(E=\left(2x-1\right)^2-\left(3x+2\right)\left(x-5\right)\)
\(\Rightarrow E=4x^2-4x+1-\left(3x^2-13x-10\right)\)
\(\Rightarrow E=4x^2-4x+1-3x^2+13x+10\)
\(\Rightarrow E=x^2+9x+11=x^2+9x+\dfrac{81}{4}-\dfrac{81}{4}+11\)
\(\Rightarrow E=\left(x+\dfrac{9}{2}\right)^2-\dfrac{37}{4}\ge-\dfrac{37}{4}\left(\left(x+\dfrac{9}{2}\right)^2\ge0\right)\)
\(\Rightarrow Min\left(E\right)=-\dfrac{37}{4}\)
\(F=\left(3x-5\right)^2-\left(3x+2\right)\left(4x-1\right)\)
\(\Rightarrow F=9x^2-30x+25-\left(12x^2+3x-2\right)\)
\(\Rightarrow F=-3x^2-33x+27=-3\left(x^2-10x+9\right)\)
\(\Rightarrow F=-3\left(x^2-10x+25\right)+48=-3\left(x-5\right)^2+48\le48\left(-3\left(x-5\right)^2\le0\right)\)
\(\Rightarrow Max\left(F\right)=48\)
Tìm X:
a) 16x2-24x+9=25
b) x2+10x+9=0
c) x2-4x-12=0
d) x2-5x-6=0
e) 4x2-3x-1=0
f) x4+4x2-5=0
`a)16x^2-24x+9=25`
`<=>(4x-3)^2=25`
`+)4x-3=5`
`<=>4x=8<=>x=2`
`+)4x-3=-5`
`<=>4x=-2`
`<=>x=-1/2`
`b)x^2+10x+9=0`
`<=>x^2+x+9x+9=0`
`<=>x(x+1)+9(x+1)=0`
`<=>(x+1)(x+9)=0`
`<=>` \(\left[ \begin{array}{l}x=-9\\x=-1\end{array} \right.\)
`c)x^2-4x-12=0`
`<=>x^2+2x-6x-12=0`
`<=>x(x+2)-6(x+2)=0`
`<=>(x+2)(x-6)=0`
`<=>` \(\left[ \begin{array}{l}x=-2\\x=6\end{array} \right.\)
`d)x^2-5x-6=0`
`<=>x^2+x-6x-6=0`
`<=>x(x+1)-6(x+1)=0`
`<=>(x+1)(x-6)=0`
`<=>` \(\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.\)
`e)4x^2-3x-1=0`
`<=>4x^2-4x+x-1=0`
`<=>4x(x-1)+(x-1)=0`
`<=>` \(\left[ \begin{array}{l}x=1\\x=-\dfrac14\end{array} \right.\)
`f)x^4+4x^2-5=0`
`<=>x^4-x^2+5x^2-5=0`
`<=>x^2(x^2-1)+5(x^2-1)=0`
`<=>(x^2-1)(x^2+5)=0`
Vì `x^2+5>=5>0`
`=>x^2-1=0<=>x^2=1`
`<=>` \(\left[ \begin{array}{l}x=1\\x=-1\end{array} \right.\)
Phân tích các đa thức sau thành nhân tử:
a) 1+25x2-10x b) 16+8x+x2 c) 16x2+24x+9y2
D) \(\dfrac{x^2}{16}\)+xy+4y2
Giải chi tiết giúp mình nha.Cảm ơn.
\(a,=\left(5x-1\right)^2\\ b,=\left(x+4\right)^2\\ c,=\left(4x+3y\right)^2\\ d,=\left(\dfrac{x}{4}+2y\right)^2\)
Tính Δ ' và tìm số nghiệm của phương trình 16 x 2 − 24 x + 9 = 0
A. Δ ' = 432 và phương trình có hai nghiệm phân biệt
B. Δ ' = − 432 và phương trình vô nghiệm
C. Δ ' = 0 và phương trình có nghiệm kép
D. Δ ' = 0 và phương trình có hai nghiệm phân biệt
Phương trình 16x2 − 24x + 9 = 0
có a = 16; b’ = −12; c = 9 suy ra
Δ ' = b ' 2 − a c = (−12)2 – 9.16 = 0
Nên phương trình có nghiệm kép
Đáp án cần chọn là: C
Tìm giá trị lớn nhất của biểu thức B = 4 – 16 x 2 – 8 x
A. 5
B. -5
C. 8
D. - 1 4
Ta có
B = 4 – 16 x 2 – 8 x = 5 – ( 16 x 2 + 8 x + 1 ) = 5 – [ ( 4 x ) 2 + 2 . 4 x . 1 + 1 2 ] = 5 – ( 4 x + 1 ) 2
Nhận thấy 4 x + 1 2 ≥ 0; Ɐx
=> 5 – 4 x + 1 2 ≤ 5
Dấu “=” xảy ra khi 4 x + 1 2 = 0 ó x = - 1 4
Đáp án cần chọn là: A
Tìm Gía Trị Nhỏ Nhất:
A=16x2+8x+5
B=x2-x
C=a2-2a+b2+6b+2021
`A=16x^2+8x+5`
`=16x^2+8x+1+4`
`=(4x+1)^2+4>=4`
Dấu "=" xảy ra khi `4x+1=0<=>x=-1/4`
`B=x^2-x`
`=x^2-x+1/4-1/4`
`=(x-1/2)^2-1/4>=-1/4`
Dấu "=" xảy ra khi `x=1/2`
`C=a^2-2a+b^2+6b+2021`
`=a^2-2a+1+b^2+6b+9+2011`
`=(a-1)^2+(b+3)^2+2011>=2011`
Dấu "=" xảy ra khi \(\begin{cases}a=1\\b=-3\\\end{cases}\)
Tìm các số tự nhiên x, y thỏa mãn: 16x2 - 2xy2 - 3y2 + 24x=-336
16x2 - 2xy2 - 3y2 + 24x = -336
\(\Leftrightarrow\) 16x2 - 2xy2 - 3y2 + 24x = -336
\(\Leftrightarrow\) 2x(8x - y2) + 3(8x - y2) = -336
\(\Leftrightarrow\) (8x - y2)(2x + 3) = -336
Đến đây chắc tự tìm được r
Chúc bn học tốt!
cứu em Giá trị nhỏ nhất của A= x2 -24x+145 là
\(A\ge1\forall x\)
Dấu '=' xảy ra khi x=12
\(A=x^2-24x+144+1=\left(x-12\right)^2+1\ge1\\ A_{min}=1\Leftrightarrow x=12\)
Tìm giá trị lớn nhất của phân thức P = 16 x 2 − 2x + 5
A. 4
B. 8
C. 16
D. 2