Phân tích các đa thức bằng phương pháp đồng nhất hệ số
a, 4x^4+4x^3+5x^2+2x+1
b, x^4+6x^3+11x^2+6x+1
Phân tích các đa thức bằng phương pháp đồng nhất hệ số
a, 4x^4+4x^3+5x^2+2x+1
b, x^4+6x^3+11x^2+6x+1
a.
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+4x^3+x^2\right)+4x^2+2x+1\)
\(=\left(2x^2+x\right)^2+2\left(2x^2+x\right)+1\)
\(=\left(2x^2+x+1\right)^2\)
\(x^4+6x^3+11x^2+6x+1\)
\(=x^4+6x^3+9x^2+2x^2+6x+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
Phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định:
a. 3x^4+11x^3-7x^2-2x+
b. x^4-6x^3+11x^2-6x+1
c. x^4-x^3+2x^2-11x-5
e. x^4++6x^3+11x^2+6x+1
f. 4x^4+4x^3+5x^2+5x+1
g. x^4-7x^3+14x^2-7x+1
Giúp mk vs. Ý nào cx đc
câu c:x^4-2x^3-x^2+x^3-2x^2-x+5x^2-10x-5=x^2(x^2-2x-1)+x(x^2-2x-1)+5(x^2-2x-1)=(x^2-2x-1)(x^2+x+5)
Dùng phương pháp hệ số bất định, phân tích các đa thức sau thành nhân tử :
a) 4x4 + 4x3 + 5x2 + 2x + 1
b) x4 - 7x3 + 14x2 - 7x + 1
c) x4 - 6x3 + 11x2 - 6x + 1
d) 3x4 + 11x3 - 7x2 - 2x + 1
câu này là câu b và c nhé nếu là câu a thì cái bt = cái khác
Gỉa sử : ( bt = biểu thức :D )
\(bt=\left(x^2+ax+b\right)\left(x^2+cx+d\right)=x^4+\left(a+c\right)x^3+\left(d+ac+b\right)x^2+\left(bc+ad\right)x+bd\)
Ta có : \(\hept{\begin{cases}a+c=-6\\d+ac+b=14\\bc+ad=-7and:bd=1\end{cases}}\)(do không có ngoặc 4
Đến đây thì giải ra như hpt thôi
Dạng này được cái không cần sáng tạo già cả chỉ cần theo công thức nhưng khá khó trong việc giải hệ
a) Giả sử
\(4x^4+4x^3+5x^2+2x+1=4\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
Khai triển vế trái = \(4x^4+4\left(a+c\right)x^3+4\left(b+d+ac\right)x^2+4\left(ad+bc\right)x+4bd\)
Rồi sử dụng đồng nhất thức, ta có hpt gồm các pt
\(4\left(a+c\right)=4\),\(4b+4d+4ac=5\),\(4ad+4bc=2\),\(4bd=1\)
Rồi ...
Các câu còn lại tương tự:))
Phân tích đa thức bậc 4 thành nhân tử có hệ số đối xứng:
a) x4+4x3+5x2+4x+1
b) x4+6x3+10x2+6x+1
c) 3x4+2x3-11x2-2x+3
d) x4+10x3+19x2-10x+1
Phân tích đa thức bậc 4 thành nhân tử có hệ số đối xứng:
a) x4+4x3+5x2+4x+1
b) x4+6x3+10x2+6x+1
c) 3x4+2x3-11x2-2x+3
d) x4+10x3+19x2-10x+1
BT3: Phân tích các đa thức sau thành nhân tử bằng phương pháp cách tách hạng tử. a, x^3 + 4x^2 - 21x b, 5x^3 + 6x^2 + x c, x^3 - 7x + 6 d, 3x^3 + 2x - 5
a) \(x^3+4x^2-21x\)
\(=x\left(x^2+4x-21\right)\)
\(=x\left(x^2-3x+7x-21\right)\)
\(=x\left[x\left(x-3\right)+7\left(x-3\right)\right]\)
\(=x\left(x-3\right)\left(x+7\right)\)
b) \(5x^3+6x^2+x\)
\(=x\left(5x^2+6x+1\right)\)
\(=x\left(5x^2+5x+x+1\right)\)
\(=x\left[5x\left(x+1\right)+\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(5x+1\right)\)
c) \(x^3-7x+6\)
\(=x^3+2x^2-3x-2x^2-4x+6\)
\(=x\left(x^2+2x-3\right)-2\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x+3\right)\)
d) \(3x^3+2x-5\)
\(=3x^3+3x^2+5x-3x^2-3x-5\)
\(=x\left(3x^2+3x+5\right)-\left(3x^2+3x+5\right)\)
\(=\left(x-1\right)\left(3x^2+3x+5\right)\)
1. Các hằng đẳng thức sau là đúng
a. x^2+6x+9/x^2+3=x+3/x+1
b. x^2-4/5x^2+13x+6=x+2/5x+3
c. x^2+5x+4/2x^2+x-3=x^2+3x+4/2x^2-5x+3
d. x^2-8x+16/16-x^2=4-x/4+x
2. P là đa thức nào để x^2+2x+1/P=x^2-1/4x^2-7x+3
a. P=4x^2+5x-2
b. P=4x^2+x-3
c. P=4x^2-x+3
d. P=4x^2+x+3
3. Đa thức Q trong đẳng thức 5(y-x)^2/5x^2-5xy=x-y/Q
a. x+y
b. 5(x+y)
c. 5(x-y)
d. x
4. Đa thức Q trong hằng đẳng x-2/2x^2+3=2x^2-4x/Q là:
a. 4x^2+16
b. 6x^2-4x
c. 4x^3+6x
d. khác
5. Phân thức 2x+1/2x-3 bằng phân thức:
a. 2x^2+x/2x-3
b. 2x^2+x/2x^2-3x
c. 2x+1/6x-9
d. Khác
Câu 5:B
Câu 4: C
Câu 3: D
Câu 2: A
Câu 1: A
Phân tích đa thức thành nhân tử
A= 6x^4-5x^3+4x^2+2x-1
B=4x^4+4x^3+5x^2+8x-6
C=x^4+x^3-5x^2+x-6
A = 6x4 - 5x3 + 4x2 + 2x - 1
= 6x4 + 3x3 - 8x3 - 4x2 + 8x2 + 4x - 2x - 1
= 3x3. ( 2x + 1 ) - 4x2 ( 2x + 1 ) + 4x ( 2x + 1 ) - ( 2x + 1 )
= ( 2x + 1 ) ( 3x3 - 4x2 + 4x - 1 )
= ( 2x + 1 ) ( 3x3 - x2 - 3x2 + x + 3x - 1 )
= ( 2x + 1 ) [ x2 ( 3x - 1 ) - x ( 3x - 1 ) + ( 3x - 1 ) ]
= ( 2x + 1 ) ( 3x - 1 ) ( x2 - x + 1 )
B = 4x4 + 4x3 + 5x2 + 8x - 6
= 4x4 - 2x3 + 6x3 - 3x2 + 8x2 - 4x + 12x - 6
= 2x3 ( 2x - 1 ) + 3x2 ( 2x - 1 ) + 4x ( 2x - 1 ) + 6 ( 2x - 1 )
= ( 2x - 1 ) ( 2x3 + 3x2 + 4x + 6 )
= ( 2x - 1 ) [ x2 ( 2x + 3 ) + 2 ( 2x + 3 ) ]
= ( 2x - 1 ) ( 2x + 3 ) ( x2 + 2 )
C = x4 + x3 - 5x2 + x - 6
= x4 - 2x3 + 3x3 - 6x2 + x2 - 2x + 3x - 6
= x3 ( x - 2 ) + 3x2 ( x - 2 ) + x ( x - 2 ) + 3 ( x - 2 )
= ( x - 2 ) ( x3 + 3x2 + x + 3 )
= ( x - 2 ) [ x2 ( x + 3 ) + ( x + 3 ) ]
= ( x - 2 ) ( x + 3 ) ( x2 + 1 )
Phân tích đa thức thành nhân tử:
1, x^3-x+y^3-4
2, 4x^2-y^2+4x+1
3, x^4+2x^3+x^2
4, x^2+5x-6
5, 7x-6x^2-2
6, 5x^2+5xy-x-y
7, 2x^2+3x-5
8,x^4-5x^2+4
9, x^3-5x^2+45-9x
10, x^4-2x^3-2x^2-2x-3
11, 81x^4+4
12,x^5+x+1
13, x^4+6x^3+7x^2-6x+1
14, x(x+4)(x+6)(x+10)+128
2: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
3: =x^2(x^2+2x+1)
=x^2(x+1)^2
4: =x^2+6x-x-6
=(x+6)(x-1)
5: =-6x^2+3x+4x-2
=-3x(2x-1)+2(2x-1)
=(2x-1)(-3x+2)
6: =5x(x+y)-(x+y)
=(x+y)(5x-1)
7: =2x^2+5x-2x-5
=(2x+5)(x-1)
8: =(x^2-1)*(x^2-4)
=(x-1)(x+1)(x-2)(x+2)
9: =x^2(x-5)-9(x-5)
=(x-5)(x-3)(x+3)