Những câu hỏi liên quan
Võ Hồng Long
Xem chi tiết
Vũ Tiến Manh
30 tháng 9 2019 lúc 22:36

Vì a,b,c là số thực dương nên \(\sqrt{a^2}=a;\sqrt{b^2}=b;\sqrt{c^2}\)=c. Vậy ta có

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)=\(\frac{a}{a+1}-1+\frac{b}{b+1}-1\)+\(\frac{c}{c+1}-1+3\) 

=3-(  \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\)) =A

ta có bdt  \(9\le\left(a+1+b+1+c+1\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)(dễ dàng chứng mình bằng bdt cosi).

=>\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\)\(\frac{9}{3+\sqrt{3}}\)=> A\(\le3-\frac{9}{3+\sqrt{3}}=\frac{3\sqrt{3}}{3+\sqrt{3}}=\frac{3}{\sqrt{3}+1}\)

dấu = khi a=b=c=\(\frac{\sqrt{3}}{3}\)

Bình luận (0)
Tùng Nguyễn
Xem chi tiết
Lê Minh Đức
Xem chi tiết
sãkaya
30 tháng 5 2017 lúc 18:55

Theo hệ quả của bất đẳng thức Cauchy 

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow3\ge ab+bc+ac\)

\(\Rightarrow3+c^2\ge ab+bc+ac+c^2=\left(a+c\right)\left(b+c\right)\)

\(\Rightarrow\sqrt{3+c^2}\ge\sqrt{\left(a+c\right)\left(b+c\right)}\)

\(\Rightarrow\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

Thiết lập tương tự ta có \(\hept{\begin{cases}\frac{bc}{\sqrt{a^2+3}}\le\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\\\frac{ac}{\sqrt{b^2+3}}\le\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\end{cases}}\)

\(\Rightarrow VT\le\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}+\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)

Áp dụng bất đẳng thức Cauchy 

\(\Rightarrow\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=\sqrt{\frac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{ab}{a+c}+\frac{ab}{b+c}}{2}\)

Tượng tự ta có \(\hept{\begin{cases}\frac{bc}{\sqrt{\left(a+c\right)\left(a+b\right)}}\le\frac{\frac{bc}{a+c}+\frac{bc}{a+b}}{2}\\\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{\frac{ac}{a+b}+\frac{ac}{b+c}}{2}\end{cases}}\)

\(\Rightarrow VT\le\frac{\left(\frac{bc}{a+b}+\frac{ac}{a+b}\right)+\left(\frac{ac}{b+c}+\frac{ab}{b+c}\right)+\left(\frac{bc}{a+c}+\frac{ab}{a+c}\right)}{2}\)

\(\Rightarrow VT\le\frac{a+b+c}{2}=\frac{3}{2}\) ( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=1\)

Bình luận (0)
Thắng Nguyễn
30 tháng 5 2017 lúc 18:51

Ta có BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\)

\(\Rightarrow ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\cdot9=3\)

Khi đó áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{ab}{\sqrt{c^2+3}}=\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\). Tương tự cũng có: 

\(\frac{bc}{\sqrt{a^2+3}}\le\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right);\frac{ca}{\sqrt{b^2+3}}\le\frac{1}{2}\left(\frac{ca}{a+b}+\frac{ca}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\frac{1}{2}\left(\frac{bc+ca}{a+b}+\frac{bc+ab}{a+c}+\frac{ab+ca}{b+c}\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Bình luận (0)
Châu Trần
Xem chi tiết
alibaba nguyễn
4 tháng 7 2017 lúc 9:43

\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

\(=\frac{a}{\sqrt{\left(ab+bc+ca\right)+a^2}}+\frac{b}{\sqrt{\left(ab+bc+ca\right)+b^2}}+\frac{c}{\sqrt{\left(ab+bc+ca\right)+c^2}}\)

\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(\le\frac{1}{2}.\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{3}{2}\)

Bình luận (0)
Phúc Long Nguyễn
Xem chi tiết
Thắng Nguyễn
9 tháng 4 2017 lúc 23:08

Ta có: 

\(\frac{a}{\sqrt{1+a^2}}=\frac{a}{\sqrt{a^2+ab+bc+ac}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Sau đó Cauchy.... 

Bài này quá nhiều người đăng đến ngán r`, bn quay lại tìm hoặc làm nốt nhéiiiiiiiiiiiiiiiii

Bình luận (0)
Nguyễn Minh Tuyền
Xem chi tiết
Quách Phú Đạt
Xem chi tiết
Kuro Kazuya
14 tháng 2 2017 lúc 13:47

Ta có \(a+b+c\le\sqrt{3}\)

\(\Rightarrow\left(a+b+c\right)^2\le3\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{3}\le1\)

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ac\)

\(\Rightarrow1\ge ab+bc+ac\)

\(\Rightarrow\left\{\begin{matrix}1+a^2\ge a^2+ab+bc+ac\\1+b^2\ge b^2+ab+bc+ac\\1+c^2\ge c^2+ab+bc+ac\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\sqrt{1+a^2}\ge\sqrt{a^2+ab+bc+ca}\\\sqrt{1+b^2}\ge\sqrt{b^2+ab+bc+ca}\\\sqrt{1+c^2}\ge\sqrt{c^2+ab+bc+ca}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{\sqrt{1+a^2}}\le\frac{a}{\sqrt{a^2+ab+bc+ac}}\\\frac{b}{\sqrt{1+b^2}}\le\frac{b}{\sqrt{b^2+ab+bc+ac}}\\\frac{c}{\sqrt{1+c^2}}\le\frac{c}{\sqrt{c^2+ab+bc+ac}}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(\Rightarrow\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{a}{\sqrt{a\left(a+b\right)+c\left(a+b\right)}}+\frac{b}{\sqrt{b\left(b+a\right)+c\left(a+b\right)}}+\frac{c}{\sqrt{c\left(c+a\right)+b\left(c+a\right)}}\)

\(\Rightarrow\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Xét \(\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng bất đẳng thức Cauchy ngược dấu cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\sqrt{\left(a+b\right)\left(a+c\right)}\ge\frac{2a+b+c}{2}\\\sqrt{\left(a+b\right)\left(b+c\right)}\ge\frac{a+2b+c}{2}\\\sqrt{\left(c+a\right)\left(c+b\right)}\ge\frac{a+b+2c}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{2a}{2b+b+c}\\\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{2b}{a+2b+c}\\\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{2c}{a+b+2c}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le2\left(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\right)\)

Chứng minh rằng: \(2\left(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\right)\le\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{3}{4}\)

Áp dụng bất đẳng thức \(\frac{1}{a+b}\ge\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\frac{a}{2a+b+c}=\frac{a}{a+c+a+b}\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\Rightarrow\frac{b}{a+2b+c}=\frac{b}{a+b+b+c}\le\frac{b}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)

\(\Rightarrow\frac{c}{a+b+2c}=\frac{c}{a+c+b+c}\le\frac{c}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(\Rightarrow VT\le\frac{a}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}+\frac{b}{4\left(a+b\right)}+\frac{b}{4\left(b+c\right)}+\frac{c}{4\left(a+c\right)}+\frac{c}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\frac{a}{4\left(a+b\right)}+\frac{b}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}+\frac{c}{4\left(a+c\right)}+\frac{b}{4\left(b+c\right)}+\frac{c}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\left(đpcm\right)\)

\(\Rightarrow2\left(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\right)\le\frac{3}{2}\)

\(\Rightarrow\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{3}{2}\)

Vậy \(\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{3}{2}\left(đpcm\right)\)

Bình luận (5)
Akai Haruma
14 tháng 2 2017 lúc 16:53

Lời giải khác:

Áp dụng bđt Cauchy-Schwarz:

\((a^2+1)(1+3)\geq (a+\sqrt{3})^2\)\(\Rightarrow \frac{a}{\sqrt{a^2+1}}\leq \frac{2a}{a+\sqrt{3}}\)

Thực hiện tương tự với các phân thức còn lại:

\(\Rightarrow \frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\leq 2\left ( \frac{a}{a+\sqrt{3}}+\frac{b}{b+\sqrt{3}}+\frac{c}{c+\sqrt{3}} \right )=2A\) $(1)$

Lại có:

\(\)\(A=\left ( 1-\frac{\sqrt{3}}{a+\sqrt{3}} \right )+\left ( 1-\frac{\sqrt{3}}{b+\sqrt{3}} \right )+\left ( 1-\frac{\sqrt{3}}{c+\sqrt{3}} \right )=3-\sqrt{3}\left ( \frac{1}{a+\sqrt{3}}+\frac{1}{b+\sqrt{3}}+\frac{1}{c+\sqrt{3}} \right )\)

Cauchy-Schwarz kết hợp với \(a+b+c\leq \sqrt{3}\):

\(A\leq 3-\frac{9\sqrt{3}}{a+b+c+3\sqrt{3}}\leq 3-\frac{9\sqrt{3}}{4\sqrt{3}}=\frac{3}{4}\) $(2)$

Từ \((1),(2)\Rightarrow \text{VT}\leq 2A\leq \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Bình luận (3)
Lightning Farron
14 tháng 2 2017 lúc 23:29

Cách khác nữa:

Nhớ là \(f\left(x\right)=\frac{x}{\sqrt{x^2+1}}\) là 1 hàm lõm khi x>0, điều này xảy ra khi

\(f''(x)=-\dfrac{3x}{(x^2+1)^{\frac{5}{2}}}<0\). giờ thì sử dụng BĐT jensen

\(f\left(a\right)+f\left(b\right)+f\left(c\right)\le3f\left(\frac{a+b+c}{3}\right)=3f\left(\frac{\sqrt{3}}{3}\right)=\frac{3}{2}\left(a+b+c=\sqrt{3}\right)\)

Đạt dc GTLN khi \(a=b=c\).

Bình luận (1)
qqqqqqqqq
Xem chi tiết
Tran Le Khanh Linh
25 tháng 8 2020 lúc 16:41

Dễ dàng dự đoán được dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)Nhận thấy các đại lượng trong căn và mẫu đồng chưa bậc nên suy nghĩ đầu tiên là đồng bậc. Để ý đến giả thiết a+b+c=1 ta thấy \(a^2+abc=a^2\left(a+b+c\right)+abc=a\left(a+b\right)\left(a+c\right)\)

\(c+ab=a\left(a+b+c\right)+ab=\left(a+c\right)\left(b+c\right)\)

Hoàn toàn tương tự ta có \(b^2+abc=b\left(b+a\right)\left(b+c\right);c^2+abc=c\left(c+b\right)\left(c+a\right)\)

\(b+ac=\left(a+b\right)\left(b+c\right);a+bc=\left(a+b\right)\left(b+c\right)\)

Khi đó bất đẳng thức cần chứng minh trở thành

\(\frac{\sqrt{a\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(b+c\right)}+\frac{\sqrt{b\left(b+c\right)\left(b+a\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{\sqrt{c\left(c+a\right)\left(c+b\right)}}{\left(b+a\right)\left(b+c\right)}\le\frac{1}{2\sqrt{abc}}\)

hay \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(c+b\right)}+\frac{b\sqrt{ab\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+b\right)\left(b+c\right)}}{\left(c+b\right)\left(b+a\right)}\le\frac{1}{2\sqrt{abc}}\)

Quan sát bất đẳng thức trên ta liên tưởng đến bất đẳng thức Cauchy, để ý là

\(bc\left(a+b\right)\left(a+c\right)=c\left(a+b\right)\cdot b\left(a+c\right)=b\left(a+b\right)\cdot c\left(a+c\right)\)

Trong 2 cách viết trên ta chọn cách viết thứ nhất vì khi sử dụng bất đẳng thức Cauchy dạng \(2\sqrt{xy}\le x+y\)thì không tạo ra các đại lượng có chứa các bình phương. Khi đó áp dụng bất đẳng thức Cauchy ta được

\(\sqrt{bc\left(a+b\right)\left(a+c\right)}\le\frac{b\left(a+c\right)+c\left(a+b\right)}{2}=\frac{ab+2bc+ca}{2}\)

Áp dụng tương tự ta được

  \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(c+a\right)\left(c+b\right)}+\frac{b\sqrt{ac\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+c\right)\left(b+c\right)}}{\left(b+c\right)\left(b+a\right)}\)\(\le\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\le1\)

hay \(a\left(ab+2bc+ca\right)\left(a+b\right)+b\left(b+c\right)\left(ab+bc+2ca\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Vế trái của bất đẳng thức là bậc bốn còn vế phải là bậc ba nên ta có thể đồng bậc là

\(a\left(ab+2bc+ca\right)+b\left(b+c\right)\left(ab+bc+2ac\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)

\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)\)

Triển khai và thu gọn ta được \(a^3\left(b+c\right)+b^3\left(c+a\right)+c^3\left(a+b\right)+a^2b^2+b^2c^2+c^2a^2+5\left(a^2bc+ab^2c+abc^2\right)\)

\(\le a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)+4\left(a^2bc+ba^2c+abc^2\right)\)

hay \(abc\left(a+b+c\right)\le a^2b^2+b^2c^2+c^2a^2\), đây là một đánh giá đúng

Dấu đẳng thức xảy ra tại \(a=b=c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Phạm Vũ Thanh Nhàn
Xem chi tiết
Lê Tài Bảo Châu
15 tháng 11 2019 lúc 22:10

Tham khảo

Câu hỏi của Châu Trần - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
Lê Tài Bảo Châu
15 tháng 11 2019 lúc 22:11

à xl gửi lộn

Bình luận (0)
 Khách vãng lai đã xóa
lili
15 tháng 11 2019 lúc 22:38

Oh yeah mik lm đc r.

\(\frac{1}{\sqrt{ab+a+2}}< =\frac{1}{ab+a+2}+\frac{1}{4}\\ \)

\(=>VT< =sigma\frac{1}{ab+a+2}+\frac{3}{4}\)

\(Có\frac{1}{ab+a+2}< =\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\)

\(CMTT\frac{1}{bc+c+2}< =\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)

\(\frac{1}{ca+c+2}< =\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\)

Cộng lại => Vế trái <= 1/4.3/4+3/4=3/2

=> đpcm.

Bình luận (0)
 Khách vãng lai đã xóa