|x+2006/2007|+|2008/2009-y|=0
So sánh: x = 2006/2007 - 2007/2008 + 2008/2009 - 2009/2010.
y = - 1/(2006 × 2007) - 1/(2007 × 2008).
Ta có:
\(x=\dfrac{2006}{2007}-\dfrac{2007}{2008}+\dfrac{2008}{2009}-\dfrac{2009}{2010}\)
\(=\dfrac{2006.2008-2007^2}{2007.2008}+\dfrac{2008.2010-2009^2}{2009.2010}\)
\(=\dfrac{2006.2007+2006-2007^2}{2007.2008}+\dfrac{2008.2009+2008-2009^2}{2009.2010}\)
\(=\dfrac{2007\left(2006-2007\right)+2006}{2007.2008}+\dfrac{2009\left(2008-2009\right)+2008}{2009.2010}\)
\(=\dfrac{-1}{2007.2008}+\dfrac{-1}{2008.2010}< \dfrac{-1}{2006.2007}+\dfrac{1}{2007.2008}\)
\(\Rightarrow x< y\)
Vậy x < y
|x+2006/2007|+|2008/2009-y|=0
Tìm x, y
Ta có: \(\hept{\begin{cases}|x+\frac{2006}{2007}|\ge0;\forall x,y\\|\frac{2008}{2009}-y|\ge0;\forall x,y\end{cases}}\)\(\Rightarrow|x+\frac{2006}{2007}|+|\frac{2008}{2009}-y|\ge0;\forall x,y\)
Do đó : \(\Rightarrow|x+\frac{2006}{2007}|+|\frac{2008}{2009}-y|=0\)
\(\Leftrightarrow\hept{\begin{cases}|x+\frac{2006}{2007}|=0\\|\frac{2008}{2009}-y|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2006}{2007}\\y=\frac{2008}{2009}\end{cases}}\)
Vậy ...
So sánh
bài 1 :A= 2006/2007-2007/2008+2008/2009-2009/2010
B= -1/2006*2007-1/2008*2009
bài 2: C= 2006/2007+2007/2008+2008/2009+2009/2006 với 4
Câu 1: So sánh các số hữu tỉ:
A = 2006/2007 - 2007/2008 + 2008/2009 - 2009/2010 với B = -1/2006 x 2007 - (-1)/2007 x 2008
{2009 x n - 2009} : {2008 x 2009 - 2006 x 2007} = 0 tính giá trị của n
quá đơn giản
n = 1
0 x {2008 x 2009 - 2006 x 2007} = 0
vậy 2009 x 1 - 2009 =0
{2009 x n - 2009} : {2008 x 2009 - 2006 x 2007} = 0 => {2009 x n - 2009} = 0 => n= 1
So sanh A va B biet : A=2006/2007+2007/2008+2008/2009 va B=(2006+2007+2008)/(2007+2008+2009)
A>b
Cách làm: Bạn tách |B ra rồi so sánh với từng ps ở A, sau đó Kết luận
So sánh 2 biểu thức:
A = 2006/2007 + 2007/2008 + 2008/2009
B = 2006 + 2007 + 2008/2007 + 2008 + 2009
\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}=1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{1}{2009}\)
\(=3-\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}>1\).
\(B=\frac{2006+2007+2008}{2007+2008+2009}< \frac{2007+2008+2009}{2007+2008+2009}=1\).
Suy ra \(A>B\).
Tìm x và y biết:
\(\left|x+\frac{2006}{2007}\right|+\left|\frac{2008}{2009}-y\right|=0\)
để được tổng =0 thì x + 2006/2007 = 0 và 2008/2009 - y =0
vậy suy ra x + 2006/2007 = 0 ; x = -2006/2007
suy ra 2008/2009 - y = 0 ; y = 2008/2009
Vì \(\left|x+\frac{2006}{2007}\right|\ge0;\left|\frac{2008}{2009}-y\right|\ge0\)
Mà \(\left|x+\frac{2006}{2007}\right|+\left|\frac{2008}{2009}-y\right|=0\)
=> \(\hept{\begin{cases}\left|x+\frac{2006}{2007}\right|=0\\\left|\frac{2008}{2009}-y\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x+\frac{2006}{2007}=0\\\frac{2008}{2009}-y=0\end{cases}}\)=> \(\hept{\begin{cases}x=-\frac{2006}{2007}\\y=\frac{2008}{2009}\end{cases}}\)
2. So sánh A và B:
A= 2006/2007 - 2007/2008 + 2008/2009 - 2009/2010
B=-1/2006*2007 - 1/2008*2009