Vì \(\left|\dfrac{x+2006}{2007}\right|\) và \(\left|\dfrac{2008}{2009-y}\right|\)=0 luôn \(\ge\) 0 với mọi x, y \(\in\)Z
Mà\(\left|\dfrac{x+2006}{2007}\right|\)+ \(\left|\dfrac{2008}{2009-y}\right|\)=0
=>\(\left\{{}\begin{matrix}\dfrac{x+2006}{2007}=0\\\dfrac{2008}{2009-y}=0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}\dfrac{x}{2007}=0-\dfrac{2006}{2007}\\\dfrac{2008}{y}=\dfrac{2008}{2009}-0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}\dfrac{y}{2007}=-\dfrac{2006}{2007}\\\dfrac{2008}{y}=\dfrac{2008}{2009}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-2006\\y=2009\end{matrix}\right.\)
Vậy x = -2006
y = 2009
Tick cho mình nha!!!