cmr: \(\frac{2a+3c}{2b+3d}\)= \(\frac{2a-3c}{2b-3d}\)
1.CHO \(\frac{2A+3C}{2B+3D}=\frac{2X-3C}{2B-3D}CMR:\frac{A}{B}=\frac{C}{D}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{2A+3C}{2B+3D}=\frac{2A-3C}{2B-3D}=\frac{2A+3C+2A-3C}{2B+3D+2B-3D}=\frac{4A}{4B}=\frac{A}{B}\left(1\right)\)\(\frac{2A+3C}{2B+3D}=\frac{2A-3C}{2B-3D}=\frac{2A+3C-2A+3C}{2B+3D-2B+3D}=\frac{6C}{6D}=\frac{C}{D}\left(2\right)\)
Từ (1) và (2) suy ra : \(\frac{A}{B}=\frac{C}{D}\)
Giải :
Từ đảng thức : \(\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)
\(\Rightarrow\left(2a+3c\right).\left(2b-3d\right)=\left(2b+3d\right).\left(2a-3c\right)\)
\(\Rightarrow4ab-6ad+6bc-9cd=4ab-6bc+6ad-9cd\)
\(\Rightarrow\left(4ab-6ad+6bc-9cd\right)-\left(4ab-6bc+6ad-9cd\right)=0\)
\(\Rightarrow4ab-6ad+6bc-9cd-4ab+6bc-6ad+9cd=0\)
\(\Rightarrow\left(4ab-4ab\right)-\left(6ad+6ad\right)+\left(6bc+6bc\right)-\left(9cd-9cd\right)=0\)
\(\Rightarrow-12ad+12bc=0\)
\(\Rightarrow12bc=12ad\)
\(\Rightarrow bc=ad\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(\text{đpcm}\right)\)
Cho \(\frac{a}{b}=\frac{c}{d}\) CMR :
A) (a + c ) . ( b - d ) = ( a -c ) . ( b + d )
b) (2a + 3c ) .( 2b - 3d ) = ( 2a - 3c ) . ( 2b + 3d )
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\left(a+c\right)\cdot\left(b-d\right)=\left(bk+dk\right)\left(b-d\right)=k\left(b^2-d^2\right)\)
\(\left(a-c\right)\left(b+d\right)=\left(bk-dk\right)\left(b+d\right)=k\left(b^2-d^2\right)\)
Do đó: \(\left(a+c\right)\left(b-d\right)=\left(a-c\right)\left(b+d\right)\)
b: \(\left(2a+3c\right)\left(2b-3d\right)=\left(2bk+3dk\right)\left(2b-3d\right)=k\left(4b^2-9d^2\right)\)
\(\left(2a-3c\right)\left(2b+3d\right)=\left(2bk-3dk\right)\left(2b+3d\right)=k\left(4b^2-9d^2\right)\)
Do đó: \(\left(2a+3c\right)\left(2b-3d\right)=\left(2a-3c\right)\left(2b+3d\right)\)
cho \(\frac{a}{b}\)=\(\frac{c}{d}\)CMR \(\frac{2a-3c}{2b-3d}\)=\(\frac{2a+3c}{2a+3d}\)
Vì \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=kd\)
\(\Rightarrow\frac{2a-3c}{2b-3d}=\frac{2bk-3dk}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\)(1)
\(\Rightarrow\frac{2a+3c}{2b+3d}=\frac{2bk+3dk}{2b+3d}=\frac{k\left(2b+3d\right)}{2b+3d}=k\)(2)
\(\RightarrowĐPCM\)
Cho a/b=c/d. CMR : 2a-3c/2b-3d=2a+3c/2a+3d
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Khi đó:
\(\frac{2a-3c}{2b-3d}=\frac{2bk-3dk}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\)
\(\frac{2a+3c}{2a+3d}=\frac{2bk+3dk}{2a+3d}=\frac{k\left(2a+3d\right)}{2a+3d}=k\)
Vậy \(\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2a+3d}=k\)
Ta có đpcm
Cho các phân số a/b;c/d. Biết ab=cd, chứng minh rằng \(\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2a+3d}\)
Cho \(\frac{a}{b}=\frac{c}{d}\), Chứng minh rằng \(\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2a+3d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\hept{\begin{cases}\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{3b+3d}\\\frac{2a}{2b}=\frac{3c}{3d}=\frac{3a-3c}{3b-3d}\end{cases}}\)
\(\Rightarrow\frac{2a-3c}{3b-3d}=\frac{2a+3c}{2b+3d}\) (Đpcm)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\hept{\begin{cases}\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{3b+3d}\\\frac{2a}{2b}=\frac{3c}{3d}=\frac{3a-3c}{3b-3d}\end{cases}}\)
\(\Rightarrow\frac{2a-3c}{3b-3d}=\frac{3a+3c}{2b+3d}\)( Đpcm )
chứng minh (2a +3c).(2b - 3d) = ( 2a - 3c).(2b+3d)
VT: (2a+3c)(2b-3d) = 4ab + 6bc - 6ad - 9cd (1)
VP: (2a - 3c)(2b+3d) = 4ab + 6bc + 6ad - 9cd (2)
Từ (1) và (2) => Đâu có bằng nhau đâu...
Cho \(\frac{a}{b}\)=\(\frac{c}{d}\),chứng minh rằng \(\frac{2a-3c}{2b-3d}\)=\(\frac{2a+3c}{2a+3d}\)
Vì theo định lí sgk thì
\(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{a-c}{b-d}=\frac{a+c}{b+d}\)từ định lí đó suy ra \(\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2b+3d}\)
bạn à viết sai đề rồi nhá
cho a/b=c/d c/m 2a+3c/2a-3c=2b+3d/2b-3d
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{2a}{2b}=\dfrac{3c}{3d}=\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
\(\Rightarrow\dfrac{2a+3c}{2a-3c}=\dfrac{2b+3d}{2b-3d}\)
\(\Rightarrow dpcm\)