√72 + √(4+1/2) - √32 - √162
\(\sqrt{72}+\sqrt{4\dfrac{1}{2}-\sqrt{32}}-\sqrt{162}\)
\(-\dfrac{6\sqrt{2}-\sqrt{\left(9-8\sqrt{2}\right)\cdot2}}{2}\)
\(\sqrt{2.36}+\sqrt{2.\dfrac{9}{4}}-\sqrt{2.16}-\sqrt{2.81}=6\sqrt{2}+\dfrac{3}{2}\sqrt{2}-4\sqrt{2}-9\sqrt{2}=\dfrac{-11}{2}\sqrt{2}\)
\(\sqrt{4\dfrac{1}{2}}+\sqrt{32}-\sqrt{72}+\sqrt{162}\)
\(\sqrt{4\dfrac{1}{2}}+\sqrt{32}-\sqrt{72}+\sqrt{162}\\ =\sqrt{\dfrac{4\cdot2+1}{2}}+\sqrt{4^2\cdot2}-\sqrt{6^2\cdot2}+\sqrt{9^2\cdot2}\\ =\sqrt{\dfrac{9}{2}}+4\sqrt{2}-6\sqrt{2}+9\sqrt{2}\\ =\dfrac{3}{\sqrt{2}}+7\sqrt{2}\\ =\dfrac{3}{\sqrt{2}}+\dfrac{7\sqrt{2}\cdot\sqrt{2}}{\sqrt{2}}\\ =\dfrac{17}{\sqrt{2}}\)
\(=\sqrt{\dfrac{9}{2}}+4\sqrt{2}-6\sqrt{2}+9\sqrt{2}\)
\(=\dfrac{3}{2}\sqrt{2}+7\sqrt{2}=\dfrac{17}{2}\sqrt{2}\)
\(\sqrt{4\dfrac{1}{2}}+\sqrt{32}-\sqrt{72}+\sqrt{162}\)
\(=\sqrt{\dfrac{9}{2}}+\sqrt{4^2.2}-\sqrt{6^2.2}+\sqrt{9^2.2}\)
\(=\dfrac{3}{\sqrt{2}}+4\sqrt{2}-6\sqrt{2}+9\sqrt{2}\)
\(=\dfrac{3\sqrt{2}}{2}+7\sqrt{2}=\dfrac{3\sqrt{2}+14\sqrt{2}}{2}=\dfrac{17\sqrt{2}}{2}\)
/sqrt{72}+ \sqrt{4+1/2} - \sqrt{32} -\sqrt{162}
\sqrt{72}\+ \sqrt{4+1/2}\ - \sqrt{32}\ -\sqrt{162}\
6) (3\(\sqrt{2}\) -\(\sqrt{3}\))(\(\sqrt{3}\)+3\(\sqrt{2}\))
7) \(\sqrt{72}\)+\(\sqrt{4\dfrac{1}{2}}\) - \(\sqrt{32}\) - \(\sqrt{162}\)
6: Ta có: \(\left(3\sqrt{2}-\sqrt{3}\right)\left(3\sqrt{2}+\sqrt{3}\right)\)
=18-3
=15
7: Ta có: \(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}-\sqrt{162}\)
\(=6\sqrt{2}+\dfrac{3}{2}\sqrt{2}-4\sqrt{2}-9\sqrt{2}\)
\(=-\dfrac{11}{2}\sqrt{2}\)
Rút gọn:
\(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}-\sqrt{162}\)
\(\sqrt{2\cdot36}+\sqrt{2\cdot\dfrac{9}{4}}-\sqrt{2\cdot16}-\sqrt{2\cdot81}=6\sqrt{2}+\dfrac{3}{2}\sqrt{2}-4\sqrt{2}-9\sqrt{2}=\dfrac{-11}{2}\sqrt{2}\)
tính
A=\(\left(1-\sqrt{7}\right).\dfrac{\sqrt{7}+7}{2\sqrt{7}}\)
B=\(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
C=\(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
D=\(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}-\sqrt{162}\)
E=\(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
a: \(A=\left(1-\sqrt{7}\right)\cdot\left(1+\sqrt{7}\right)=1-7=-6\)
b: \(B=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}=-4\sqrt{3}\)
c: \(C=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)
Cho S= 1/2 + 1/8 + 1/18 + 1/32 + 1/50 + 1/72 + 1/98 + 1/128 + 1/162
Chứng tỏ S < 18/19
\(\)Bài 1: Rút gọn các biểu thức sau
a) A= \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
b) B= \(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
c) C= \(\sqrt{72}+\sqrt{4\frac{1}{2}}-\sqrt{32}-\sqrt{162}\)
a, A = \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
= \(3\sqrt{3}+8\sqrt{3}-15\sqrt{3}\)
= \(-4\sqrt{3}\)
b, B = \(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
= \(4\sqrt{2}-5\sqrt{2}+3\sqrt{2}\)
= \(2\sqrt{2}\)
Cho biết: 1 2 + 2 2 + 3 2 + . . . + 10 2 = 385
Tính nhanh giá trị của biểu thức sau S = 12 2 + 14 2 + 16 2 + 18 2 + 20 2 - 1 2 + 3 2 + 5 2 + 7 2 + 9 2
A. 1155
B. 5511
C. 5151
D. 1515