\(\sqrt{4\dfrac{1}{2}}+\sqrt{32}-\sqrt{72}+\sqrt{162}\\ =\sqrt{\dfrac{4\cdot2+1}{2}}+\sqrt{4^2\cdot2}-\sqrt{6^2\cdot2}+\sqrt{9^2\cdot2}\\ =\sqrt{\dfrac{9}{2}}+4\sqrt{2}-6\sqrt{2}+9\sqrt{2}\\ =\dfrac{3}{\sqrt{2}}+7\sqrt{2}\\ =\dfrac{3}{\sqrt{2}}+\dfrac{7\sqrt{2}\cdot\sqrt{2}}{\sqrt{2}}\\ =\dfrac{17}{\sqrt{2}}\)
\(=\sqrt{\dfrac{9}{2}}+4\sqrt{2}-6\sqrt{2}+9\sqrt{2}\)
\(=\dfrac{3}{2}\sqrt{2}+7\sqrt{2}=\dfrac{17}{2}\sqrt{2}\)
\(\sqrt{4\dfrac{1}{2}}+\sqrt{32}-\sqrt{72}+\sqrt{162}\)
\(=\sqrt{\dfrac{9}{2}}+\sqrt{4^2.2}-\sqrt{6^2.2}+\sqrt{9^2.2}\)
\(=\dfrac{3}{\sqrt{2}}+4\sqrt{2}-6\sqrt{2}+9\sqrt{2}\)
\(=\dfrac{3\sqrt{2}}{2}+7\sqrt{2}=\dfrac{3\sqrt{2}+14\sqrt{2}}{2}=\dfrac{17\sqrt{2}}{2}\)