1/2+1/3+2/3+1/4+2/4+3/4+1/5+2/5+3/5+4/5+...+1/n+2/n+3/n+...+n-1/n
1/2+1/3+2/3+1/4+2/4+3/4+1/5+2/5+3/5+4/5+...+1/n+2/n+3/n+...+n-1/n
1/1*2 +1/2*3 +1/3*4 + 1/4*5 +...+1/n*(n+1) 3/1*2+3/2*3+3/3*4+3/4*5+...+3/n*(n+1) tính tổng nha các bạn
\(S=\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\)
\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(S=1-\dfrac{1}{n+1}=\dfrac{n}{n+1}\)
\(T=\dfrac{3}{1x2}+\dfrac{3}{2x3}+\dfrac{3}{3x4}+\dfrac{3}{4x5}+...\dfrac{3}{nx\left(n+1\right)}\)
\(T=3x\left[\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\right]\)
\(T=3x\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\right]\)
\(T=3x\left(1-\dfrac{1}{n+1}\right)=\dfrac{3xn}{n+1}\)
Tính toán
1) S = 1+2+3+4+...+n
2) S = 1*2*3...*n
3)S = 2+4+6+...+n
4)S = 1+3+5+...+n
5)S = 2*4*6...*n
6)S = 1-2+3-4+...+n
7)S = -1+2-3+4+...+n
8)S = 1+4+9+16+...+n*n
9)S = 1+9+25+...+( n mod 2 = 1)^2
10)S =4+16+...+( n mod 2 = 0)^2
11)S =5+10+15+...+ n mod 5 =0
12)S = 1+2-3+4+5-6+7+8-9...+n-(n mod 3 = 0 )
13)S = 1+2!+3!+4!...+n!
14)S =1+(1+2)+(1+2+3)+...+( tổng các số từ 1 tới )( i chạy từ 1 tới n)
15)S =1*2+2*3+4*5+...+(n-1)*n
HELP ME!
B = 1 + 5 + 52 + 53 + ....... + 52008 + 52009
S = 1 + 2 + 5 + 14 + ....... + 3n-1 + 1/2 (với n thuộc Z)
A = 1 + 3/2^3 + 4/2^4 + 5/2^5 + ...... + 100/2^100
Q = 1 + 1/2*(1+2) + 1/3*(1+2+3) + 1/4*(1+2+3+4) + ...... + 1/20*(1+2+3+.....+20)
M = -4/1*5 - 4/5*9 - 4/9*13 - ....... - 4/(n+4)*n
Giúp mk với! Mk đang cần gấp lắm !!!!!
\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)
Trừ theo vế:
\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)
\(4B=5^{2010}-1\)
\(B=\frac{5^{2010}-1}{4}\)
\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)
\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)
\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)
Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)
\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)
Trừ theo vế:
\(3X-X=3^n-3^0=3^n-1\)
\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(\Rightarrow 2A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)
Trừ theo vế:
\(2A-A=1+\frac{3}{2^2}+\frac{4-3}{2^3}+\frac{5-4}{2^4}+\frac{6-5}{2^5}+...+\frac{100-99}{2^{99}}-\frac{100}{2^{100}}\)
\(\Leftrightarrow A=1+\frac{3}{4}-\frac{100}{2^{100}}+(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}})\)
Đặt \(T=(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}})\)
\(\Rightarrow 2T=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\)
Trừ theo vế: \(2T-T=\frac{1}{2^2}-\frac{1}{2^{99}}\)
\(\Leftrightarrow T=\frac{1}{4}-\frac{1}{2^{99}}\)
Do đó: \(A=1+\frac{3}{4}-\frac{100}{2^{100}}+\frac{1}{4}-\frac{1}{2^{99}}=2-\frac{102}{2^{100}}\)
Chứng minh rằng:
a) A=1/2+2/2^2+3/2^3+4/4^4+...+100/3^100<2
b) B=1/3+2/3^2+3/3^3+...+100/3^100<3/4
c) C=1/2^3+1/3^3+1/4^3+...+1/n^3<1/4 (n thuộc N; n> hoặc = 2)
d) D=1/3^3+1/4^3+1/5^3+...+1/n^3<1/12 (n thuộc N; n> hoặc =3)
e) E=2/1*4/3*6/5*...*200/199<20
f) F=3/4+5/56+7/144+...+2n+1/n^2+(n+1)^2 ( n nguyên dương)
g) G=1/2*(1/6+1/24+1/60+...+1/9240)>57/62
h) H=1/31+1/32+1/33+...+1/2048>3
i) I=(1-1/3)*(1-1/6)*(1-1/10)*...*(1-1/253)<2/5
j) J=1/2!+2/3!+3/4!+...+n-1/n!<2
k) K=1/2!+5/3!+11/4!+...+n^2+n-1/(n+1)!<2 (n nguyên dương)
l) 1/6<L=1/5^2+1/6^2+1/7^2+...+1/100^2<1/4
a/(Sửa đề bài) A= 1/2 + 2/22 + 3/23 + 4/24 +..+ 100/2100 => 1/2A = 1/22 + 2/23 + 3/24 +..+ 100/2101 => A - 1/2A = 1/2 + 2/22 +..+ 100/2100 - 1/22 - 2/23 -..- 100/2101 => 1/2A = 1/2 + 1/22 + 1/23 +..+ 1/2100 - 100/2101 Gọi riêng cụm (1/2 + 1/22 +..+ 1/2100) là B => 2B = 1 + 1/2 + 1/22 +..+ 1/299 => 2B-B = B = 1+ 1/2 +1/22 +..+ 1/299 - 1/2 - 1/22 -..- 1/2100 = 1 - 1/2100 => 1/2A = 1 - 1/2100 - 100/2101 Có 1/2A < 1 => A < 2 =>ĐPCM b/ => 1/3C = 1/32 + 2/33 + 3/34 +..+ 100/3101 => C - 1/3C = 2/3C = 1/3 + 2/32 +..+ 100/3100 - 1/32 - 2/33 -..- 100/3101 = 1/3 + 1/32 + 1/33 +..+ 1/3100 - 100/3101 Gọi riêng cụm (1/3 + 1/32 +..+ 1/3100) là D => 3D = 1 + 1/3 +..+ 1/399 => 3D - D = 2D = 1 + 1/3 +..+1/399 - 1/3 -1/32 -..- 1/3100 = 1 - 1/3100 => 2/3C *2 = 4/3C = 1 - 1/3100 - 200/3101 Có 4/3C < 1 => C<3/4 => ĐPCM Tạm thời thế đã, giải tiếp đc con nào mình sẽ gửi sau :)
Chứng minh rằng:
a) A=1/2^2+1/3^2+1/4^2+...+1/2010^2<1
b) B=1/2+2/2^2+3/2^3+...+100/2^100<2
c) C=1/3+2/3^2+3/3^3+...+100/3^100<3/4
d) D=1/2^3+1/3^3+1/4^3+...+1/n^3<1/4 (n€ N;n> hoặc = 3)
e) E=1/3^3+1/4^3+1/5^3+...+1/n^3<1/12 (n€N; n> hoặc = 3)
f) F=2/1*4/3*6/5*...*200/199<20
g) G=3/4+5/36+7/144+...+2n+1/n^2*(n+1)^2<1 (n nguyên dương)
h) H=1/2*(1/6+1/24+1/60+...+1/9240)>57/462
i) I=1/31+1/32+1/33+...+1/2048>3
j) J=(1-1/3)*(1-1/6)*(1-1/10)*...*(1-1/253)<2/5
k) K=1/2!+2/3!+3/4!+...+n-1/n! (n€N;n> hoặc = 2)
l) L=1/2!+5/3!+11/4!+...+n^2+n-1/(n+1)!<2
m) 1/6M=1/5^2+1/6^2+1/7^2+...+1/100^2<1/4
Có thể mình hơi phũ tí nhưng mình bảo đảm một thế kỉ sau sẽ không ai ngồi giải hết đống bài này cho bạn đâu, hỏi từng câu thôi
P/s: chắc bạn đánh mỏi tay lắm
Ta có: D<1/1.2.3+1/2.3.4+1/3.4.5+...+1/(n-1).n.(n+1)
D<1/2.(2/1.2.3+2/2.3.4+2/3.4.5+...+2/(n-1).n.(n+1))
D<1/2.(1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+...+1/(n-1).n-1/n.(n+1))
D<1/2.((1/2-1/n.(n+1))
D<1/4-1/2.n.(n+1)<1/4
D<1/4
viết chương trình tính tổng
s= 1*2/3*4+2*3/4*5+3*4/5*6+...+n*(n+1)/(n+2)*(n+3)
uses crt;
var s:real;
i,n:integer;
begin
clrscr;
readln(n);
s:=0;
for i:=1 to n do
s:=s+(n*(n+1))/((n+2)*(n+3));
writeln(s:4:2);
readln;
end.
Tính tổng đại số
\(A=\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}-\dfrac{1}{5}-\dfrac{2}{5}-\dfrac{3}{5}-\dfrac{4}{5}+...+\dfrac{1}{10}+\dfrac{2}{10}+...+\dfrac{9}{10}\)
\(B=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}+...+\dfrac{1}{n}+\dfrac{2}{n}+...+\dfrac{n-1}{n}\)\(\left(n\in Z,n\ge2\right)\)
B=1*2*3+2*3*4+3*4*5+...+(n-1)*n*(n+2)
C=1*4+*2*5+3*6+4*7+.....+n*(n+1)*3
D= 12 + 22 +32 +....+ n2