\(2018^5:\left(x-60\right)=2018\)
\(2018^5\cdot\left(x-60\right)-20=30\)
Cho x, y, z >0, x+y+z=2018. C/m biểu thức sau không phụ thuộc vào x:
m = x.\(\sqrt{\frac{\left(y^2+2018\right).\left(z^2+2018\right)}{x^2+2018}}+y.\sqrt{\frac{\left(x^2+2018\right).\left(z^2+2018\right)}{y^2+2018}}+z.\sqrt{\frac{\left(x^2+2018\right).\left(y^2+2018\right)}{z^2+2018}}\)
\(\dfrac{\left(2017-x\right)^2-\left(2017-x\right)\left(x-2018\right)+\left(x-2018\right)^2}{\left(2017-x\right)^2+\left(2017-x\right)\left(x-2018\right)+\left(x-2018\right)^2}=\dfrac{5}{3}\)
Các bạn giải giúp mình nhé, đây là đề ôn toán hk2 lớp 8
Đặt x - 2017 = a
Phương trình trên tương đương:
\(\dfrac{\left(-a\right)^2-\left(-a\right)\left(a-1\right)+\left(a-1\right)^2}{\left(-a\right)^2+\left(-a\right)\left(a-1\right)+\left(a-1\right)^2}=\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{a^2+a^2-a+a^2-2a+1}{a^2-a^2+a+a^2-2a+1}=\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3a^2-3a+1}{a^2-a+1}=\dfrac{5}{3}\)
\(\Leftrightarrow9x^2-9x+3=5x^2-5x+5\)
\(\Leftrightarrow4x^2-4x-2=0\)
\(\Leftrightarrow\left(x-\dfrac{1+\sqrt{3}}{2}\right)\left(x-\dfrac{1-\sqrt{3}}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1+\sqrt{3}}{2}\\\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình: \(S=\left\{\dfrac{1+\sqrt{3}}{2};\dfrac{1-\sqrt{3}}{2}\right\}\)
Tìm giá trị nhỏ nhất của biểu thức và giá trị tương ứng của x,y
\(A=\left(3x+4\right)^{2018}+\left|3y+5\right|+2018^0\\\)
\(B=2\left|x-100\right|+\left|2x+1\right|\)
\(C=\left|x-y-5\right|+2018.\left(y-3\right)^{2020}+2019\)
\(D=\left|2x+2018\right|+2\left|x-1\right|\)
giải phương trình
\(\dfrac{\left(2017-x\right)^2+\left(2017-x\right)\left(x-2018\right)+\left(x-2018\right)^2}{\left(2017-x\right)^2-\left(2017-x\right)\left(x-2018\right)+\left(x-2018\right)^2}=\dfrac{19}{49}\)
Giải phương trình: \(\frac{\left(2017-x\right)^2+\left(2017-x\right)\left(x-2018\right)+\left(x-2018^2\right)}{\left(2017-x\right)^2-\left(2107-x\right)\left(x-2018\right)+\left(x-2018\right)^2}=\frac{13}{37}\)
Đây là đề thi hoc sinh giỏi lớp 9 cấp tỉnh Phú yên năm 2018-2019
Dễ thấy \(x=2017\)không là nghiệm của phương trình.
Ta có:
\(\frac{1+\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)^2}{1-\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)}=\frac{13}{37}\)
Đặt \(\frac{x-2018}{2017-x}=a\)
\(\Rightarrow\frac{1+a+a^2}{1-a+a^2}=\frac{13}{37}\)
\(\Leftrightarrow24a^2+50a+24=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\\a=-\frac{4}{3}\end{cases}}\)
Giải phương trình:\(\frac{\left(2018-x\right)^2+\left(2018-x\right)\left(x-2019\right)+\left(x-2019\right)^2}{\left(2018-x\right)^2-\left(2018-x\right)\left(x-2019\right)+\left(x-2019\right)^2}=\frac{19}{49}\)
Đặt \(\left\{{}\begin{matrix}2018-x=a\\x-2019=b\end{matrix}\right.\) \(\Rightarrow a+b=-1\Rightarrow b=-1-a\)
\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow15a^2+34ab+15b^2=0\)
\(\Leftrightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5a=-3b\\3a=-5b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5a=-3\left(-1-a\right)\\3a=-5\left(-1-a\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2a=3\\2a=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2018-x=\frac{3}{2}\\2018-x=-\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{4033}{2}\\x=\frac{4041}{2}\end{matrix}\right.\)
Chứng minh :
\(\frac{\left(2017-x\right)^2+\left(2017-x\right)\left(x-2018\right)+\left(x-2018\right)^2}{\left(2017-x\right)^2-\left(2017-x\right)\left(x-2018\right)+\left(x-2018\right)^2}\) \(=\)\(\frac{19}{49}\)
À khác cái dấu nhưng đề phải là giải phương trình chứ
Đặt 2017-x=a => x-2018=-a-1 phương trình trở thành:
\(\frac{a^2+a\left(-a-1\right)+\left(a-1\right)^2}{a^2-a\left(-a-1\right)+\left(a-1\right)^2}=\frac{19}{49}\)
\(\Leftrightarrow\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+a+1\right)=19\left(3a^2+3a+1\right)\)
\(\Leftrightarrow49a^2+49a+49=57a^2+57a+19\)
\(\Leftrightarrow8a^2+8a-30=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=2015,5\\x=2019,5\end{cases}}}\)
Vậy......................
Tìm x, y, z:
\(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}+\left|x+y-z\right|=0\)
Ta có: (2x-1)2018≥0 ; (y-2/5)2018≥0 ; |x+y-z|≥0
=>\(\hept{\begin{cases}\left(2x-1\right)^{2018}=0\\\left(y-\frac{2}{5}\right)^{2018}=0\\\left|x+y-z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)
Chúc bạn học tốt!
Ta có :
\(\left(2x-1\right)^{2018}\ge0\)
\(\left(y-\frac{2}{5}\right)^{2018}\ge0\)
\(\left|x+y-z\right|\ge0\)
Mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}+\left|x+y-z\right|=0\) ( Giả thiết )
\(\Rightarrow\)\(\hept{\begin{cases}\left(2x-1\right)^{2018}=0\\\left(y-\frac{2}{5}\right)^{2018}=0\\\left|x+y-z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)
Vậy \(x=\frac{1}{2}\)\(;\)\(y=\frac{2}{5}\) và \(z=\frac{9}{10}\)
Chúc bạn học tốt ~