\(2018^5\cdot\left(x-60\right)-20=30\)
Giải các PT sau
1. \(\cos^2\left(x-30^{\cdot}\right)-\sin^2\left(x-30^{\cdot}\right)=\sin\left(x+60^{\cdot}\right)\)
2. \(\sin^22x+\cos^23x=1\)
3. \(\sin x+\sin2x+\sin3x+\sin4x=0\)
4. \(\sin^2x+\sin^22x=\sin^23x\)
1.Pt \(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=sin\left(x+\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\left(\dfrac{\pi}{6}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\\2x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(\Rightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\)\(\left(k\in Z\right)\)
2.\(sin^22x+cos^23x=1\)
\(\Leftrightarrow\dfrac{1-cos4x}{2}+\dfrac{1+cos6x}{2}=1\)
\(\Leftrightarrow cos6x=cos4x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{k\pi}{5}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow x=\dfrac{k\pi}{5}\)\(\left(k\in Z\right)\) (Gộp nghiệm)
Vậy...
3. \(Pt\Leftrightarrow\left(sinx+sin3x\right)+\left(sin2x+sin4x\right)=0\)
\(\Leftrightarrow2.sin2x.cosx+2.sin3x.cosx=0\)
\(\Leftrightarrow2cosx\left(sin2x+sin3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin3x=-sin2x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\sin3x=sin\left(\pi+2x\right)\end{matrix}\right.\)(\(k\in Z\))
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\)(\(k\in Z\))\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\) (\(k\in Z\))
Vậy...
4. Pt\(\Leftrightarrow\dfrac{1-cos2x}{2}+\dfrac{1-cos4x}{2}=\dfrac{1-cos6x}{2}\)
\(\Leftrightarrow cos2x+cos4x=1+cos6x\)
\(\Leftrightarrow2cos3x.cosx=2cos^23x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\cosx=cos3x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=-k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)
Vậy...
Tìm x:
a) \(\frac{3}{\left(x+2\right)\cdot\left(x+5\right)}\)+\(\frac{5}{\left(x+5\right)\cdot\left(x+10\right)}\)+\(\frac{7}{\left(x+10\right)\cdot\left(x+17\right)}\)= \(\frac{x}{\left(x+2\right)\cdot\left(x+17\right)}\)
Với x không thuộc (-2;-5;-10;-17)
b) \(\frac{2}{\left(x-1\right)\cdot\left(x-3\right)}\)+\(\frac{5}{\left(x-3\right)\cdot\left(x-8\right)}\)+\(\frac{12}{\left(x-8\right)\cdot\left(x-20\right)}\)-\(\frac{1}{20}\)= \(\frac{-3}{4}\)
Với x không thuộc (1;3;8;20)
c)\(\frac{x+1}{2019}\)+\(\frac{x+2}{2018}\)= \(\frac{x-3}{2017}\)\(\frac{x-4}{2016}\)
\(|5\cdot a-6\cdot b+300|^{2017}+\left(20-3\cdot b\right)^{2018}=C\)
a) \(\frac{1}{20}\left(x-\frac{8}{15}\right)=\frac{-1}{30}\)
b) \(\left(28+\frac{1}{5}\right)\cdot\left(\frac{3}{5}\cdot x+\frac{4}{7}\right)=0\)
c)\(\left(x+3\right)\cdot\left(x-4\right)< 0\)
\(\frac{1}{20}\left(x-\frac{8}{15}\right)=-\frac{1}{30}\) \(\left(28+\frac{1}{5}\right).\left(\frac{3}{5}.x+\frac{4}{7}\right)=0\)
\(x-\frac{8}{15}=-\frac{1}{30}:\frac{1}{20}\) \(\frac{141}{5}.\left(\frac{3}{5}.x+\frac{4}{7}\right)=0\)
\(x-\frac{8}{15}=-\frac{2}{3}\) \(\frac{3}{5}.x+\frac{4}{7}=0\)
\(x=-\frac{2}{3}+\frac{8}{15}\) \(\frac{3}{5}.x=-\frac{4}{7}\)
\(x=-\frac{2}{15}\) \(x=-\frac{20}{21}\)
1.Tính A= \(\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot\cdot\cdot\left(\dfrac{1}{2018}-1\right)\)
2. Tìm GTLN của B = \(-\left|2018\cdot x+1\right|+\dfrac{3}{13}\)
1,
\(A=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2018}-1\right)\\ A=\left(-\dfrac{1}{2}\right)\cdot\left(-\dfrac{2}{3}\right)\cdot...\cdot\left(-\dfrac{2017}{2018}\right)\\ =-\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2017}{2018}\right)\\ =-\dfrac{1}{2018}\)
\(\dfrac{2}{1^2}\cdot\dfrac{6}{2^2}\)\(\cdot\dfrac{12}{3^2}\cdot\dfrac{20}{4^2}\cdot\cdot\cdot\cdot\dfrac{110}{10^2}\)\(\cdot\left(x-2\right)=-20\left(x+1\right)+60\)
giải phương trình trên
\(\dfrac{1.2}{1.1}.\dfrac{2.3}{2.2}.\dfrac{3.4}{3.3}.\dfrac{4.5}{4.4}...\dfrac{10.11}{10.10}\left(x-2\right)=-20x+40\)
\(\Leftrightarrow\dfrac{2.3.4...11}{1.2.3...10}\left(x-2\right)=-20x+40\)
\(\Leftrightarrow11\left(x-2\right)=-20x+40\)
\(\Leftrightarrow11x-22=-20x+40\)
\(\Leftrightarrow31x=62\)
\(\Rightarrow x=2\)
\(=>\dfrac{2\cdot1}{1\cdot1}\cdot\dfrac{2\cdot3}{2\cdot2}\cdot\dfrac{3\cdot4}{3\cdot3}\cdot......\cdot\dfrac{10\cdot11}{10\cdot10}\cdot\left(x-2\right)=-20\left(x+1\right)+60\)=>11*(x-2)=-20*(x+1)+60
=>11x-22=-20x-20+60
=>31x=62
=>x=2
\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\left(1-\frac{1}{5}\right)\cdot...\cdot\left(1-\frac{1}{2017}\right)\cdot\left(1-\frac{1}{2018}\right)\)
= (1/2).(2/3).(4/5).(5/6)......(2016/2017).(2017/2018)
=1.2.3.4.5......2016.2017/2.3.4.5.....2017.2018
=1/2018
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\cdot\cdot\frac{2016}{2017}\cdot\frac{2017}{2018}\)
\(=\frac{1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot2016\cdot2017}{2\cdot3\cdot4\cdot\cdot\cdot\cdot2017\cdot2018}\)
\(=\frac{1}{2018}\)
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2016}{2017}.\frac{2017}{2018}\)
\(=\frac{1}{2018}\)
p/s: chúc bạn hok tốt
Tìm x biết: \(\left(1+\dfrac{1}{1.3}\right)\cdot\left(1+\dfrac{1}{2.4}\right)\cdot...\cdot\left(1+\dfrac{1}{x\left(x+2\right)}\right)=\dfrac{2.2017}{2018}\)
Gọi thương là Q(x), dư là \(ax+b\)
Ta có : \(f\left(x\right)=x^{2019}+x^{2018}+x^5+22=Q\left(x\right)\cdot\left(x^2-1\right)+ax+b\)
\(\Leftrightarrow x^{2019}+x^{2018}+x^5+22=Q\left(x\right)\cdot\left(x-1\right)\cdot\left(x+1\right)+ax+b\)
Vì đẳng thức trên đúng với mọi x nên :
+) đặt \(x=1\)ta có : \(1^{2019}+1^{2018}+1^5+22=Q\left(1\right)\cdot\left(1-1\right)\left(1+1\right)+a\cdot1+b\)
\(\Leftrightarrow a+b=25\)(1)
+) đặt \(x=-1\)ta có : \(\left(-1\right)^{2019}+\left(-1\right)^{2018}+\left(-1\right)^5+22=Q\left(x\right)\cdot\left(-1-1\right)\left(-1+1\right)+a\left(-1\right)+b\)
\(\Leftrightarrow-a+b=21\)(2)
Từ (1) và (2) ta giải hệ được \(\hept{\begin{cases}a=2\\b=23\end{cases}}\)
Vậy dư của đa thức là \(2x+23\)
Tag hộ tth vào phát :)
Mọi người vào topic thảo luận bài với ạ
Cho hỏi bài này mọi người ơi :
Cho \(a,b,c>0\)thỏa mãn \(abc=1\)
Tìm giá trị lớn nhất của biểu thức : \(M=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)
Hóng cao nhân ạ :)