\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\left(1-\frac{1}{5}\right)\cdot...\cdot\left(1-\frac{1}{2017}\right)\cdot\left(1-\frac{1}{2018}\right)\)
a) Tính
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\cdot\cdot\left(1-\frac{1}{2014}\right)\cdot\left(1-\frac{1}{2015}\right)\cdot\left(1-\frac{1}{2016}\right)\)
b) Tìm x:
\(\frac{x-2}{12}+\frac{x-2}{20}+\frac{x-2}{30}+\frac{x-2}{42}+\frac{x-2}{56}+\frac{x-2}{72}=\frac{16}{9}\)
tìm x
a) \(\frac{x-1}{2}+\frac{x-2}{5}=\frac{1}{4}+\frac{x-7}{10}\)
b) \(3-\frac{2}{2x-3}=\frac{2}{5}+\frac{1}{2x-3}-\frac{3}{2}\)
c)\(7\cdot\left(x-1\right)+2x\cdot\left(1-x\right)=0\)
d) \(\frac{x+1}{2008}+\frac{x+2}{2017}+\frac{x+3}{2016}=\frac{x+10}{2009}+\frac{x+11}{2008}+\frac{x+12}{2007}\)
e) \(\frac{2}{\left(x-1\right)\cdot\left(x-3\right)}+\frac{5}{\left(x-3\right)\cdot\left(x-8\right)}+\frac{12}{\left(x-8\right)\cdot\left(x-20\right)}-\frac{1}{x-20}=\frac{-3}{4}\)
\(2018^5:\left(x-60\right)=2018\)
Tìm x
a, \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
b,\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot\frac{4}{10}\cdot\frac{5}{12}.....\frac{30}{62}\cdot\frac{31}{64}=2^x\)
Tìm x:
\(\frac{\left(13\frac{2}{9}-15\frac{2}{3}\right)\cdot\left(30^2-5^4\right)}{\left(18\frac{3}{7}-17\frac{1}{4}\right)\cdot\left(25-12\cdot5^2\right)}\cdot x=\frac{\frac{2}{11}+\frac{3}{13}+\frac{4}{15}+\frac{5}{17}}{4\frac{1}{11}+\frac{5}{13}+\frac{9}{15}+\frac{13}{17}}\)
Tính
\(\left(2018-\frac{1}{3}-\frac{2}{4}-\frac{3}{5}-\frac{4}{6}-...-\frac{2018}{2020}\right):\left(\frac{1}{15}+\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)\)
a)\(\left(2^2+3\right)\cdot\left(x-5\right)+14=5^2124:2^2\)
b) \(3^2\cdot\left(x+1\right)-3=2^3+7^2\cdot2:14\)
c) \(2^2\cdot3\cdot\left(x+5\right)-6=\left(2^3+2^2\right)\cdot2^2\)
d) \(\left(2^2+1\right)\cdot\left(x+14\right)=5^2\cdot4+\left(2^5+3^2+7^2\right):2\)
e) \(\left(2^2-1\right)\cdot\left(x-1\right)=2^2+\left(6^2+2^6\right):\left(5^2\cdot2\right)\)
g) \(\left(3^2-2\right)\cdot\left(x-12\right)+35=5^2+279:3^2\)
nhìn thì cảm thấy khó nhưng lại rất dễ đó
\(\frac{3^{10}\cdot\left(-5\right)^{21}}{\left(-5\right)^{20}\cdot3^{12}}=\)