Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Đức Bách
Xem chi tiết
Hoàng Lê Bảo Ngọc
14 tháng 9 2016 lúc 17:27

Chia làm hai trường hợp : 

TH1. Nếu x = y = z = 0 thì thỏa mãn đề bài.

TH2. Nếu \(x,y,z\ne0\) thì ta có : \(x=\sqrt{7}y-\sqrt{5}x\) . 

Dễ dàng chứng minh được \(\sqrt{5}\) và \(\sqrt{7}\) là các số vô tỉ . Mặt khác vì \(x,y,z\ne0\) nên \(\sqrt{7}y-\sqrt{5}x\) là số vô tỉ (Vô lí vì x là số hữu tỉ)

Vậy trường hợp này không xảy ra.

Vậy x = y = z = 0

Thanh Tâm
Xem chi tiết
Kim Taehyung
Xem chi tiết
Fairy Tail
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
Đào Thu Hoà
24 tháng 5 2019 lúc 12:35

Ta có \(\frac{x-y\sqrt{2019}}{y-z\sqrt{2019}}=\frac{m}{n}\left(m,n\varepsilonℤ,\left(m,n\right)=1\right).\)

\(\Rightarrow nx-ny\sqrt{2019}=my-mz\sqrt{2019}\Leftrightarrow nx-my=\sqrt{2019}\left(ny-mz\right).\)\(\Rightarrow\hept{\begin{cases}nx-my=0\\ny-mz=0\end{cases}\Rightarrow}\frac{x}{y}=\frac{y}{z}=\frac{m}{n}\Rightarrow xz=y^2.\)

Khi đó \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-2y^2+y^2=\left(x+z\right)^2-y^2\)

                                    \(=\left(x-y+z\right)\left(x+y+z\right)\)

Vì   \(x+y+z\)là số nguyên lớn hơn 1 và \(x^2+y^2+z^2\)là số nguyên tố nên

\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}\Leftrightarrow}x=y=z=1\)(chỗ này bn tự giải chi tiết nhé, và thử lại nữa) 

Kết luận...

Trần Đức
18 tháng 10 2020 lúc 22:12

ảnh đẹp

Khách vãng lai đã xóa
Nguyễn Võ Anh Nguyên
Xem chi tiết
Thân thi thu
Xem chi tiết
Hoàng Thị Mai Hương
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết
nthv_.
10 tháng 10 2021 lúc 10:07

Tham khảo nha ông:

undefined