cho a, b,c là độ dài 3 cạnh của tam giác
CM : ( a + b - c)( c + a - b ) bé hơn hoặc bằng 8abc
Gọi a,b,c là độ dài ba cạnh của một tam giác. Cho biết (a+b)(b+c)(c+a)=8abc. CM: tam giác đã cho là tam giác đều
a;b;c là 3 cạnh của tam giác => a; b; c dương
Với a; b dương ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) => a + b \(\ge\) 2. \(\sqrt{ab}\)
Tương tự, b + c \(\ge\) 2.\(\sqrt{bc}\); c + a \(\ge\)2. \(\sqrt{ca}\)
=> (a + b).(b+c).(c+a) \(\ge\)8. \(\sqrt{ab}\).\(\sqrt{bc}\).\(\sqrt{ca}\) = 8.abc
Dấu = xảy ra khi a = b = c
=> tam giác có 3 cạnh là a; b; c là tam giác đều
Gọi a,b,c là độ dài ba cạnh của một tam giác. Cho biết (a+b)(b+c)(c+a)=8abc. CM: tam giác đã cho là tam giác đều bât
Cho a,b,c là độ dài 3 cạnh của một tam giác
Chứng minh :(a+b-c)(b+c-a)(c+a-b) <=(bé hơn hoặc bằng) abc
Vì a:b:c là độ dài cạnh tam giác nên \(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}\Rightarrow\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}}\)
Áp dụng bđt AM - GM ta có :
\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=\frac{2b}{2}=b\)(1)
\(\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\le\frac{a+b-c+c+a-b}{2}=\frac{2a}{2}=a\)(2)
\(\sqrt{\left(b+c-a\right)\left(c+a-b\right)}\le\frac{b+c-a+c+a-b}{2}=\frac{2c}{2}=c\)(3)
Nhân vế với vế của (1); (2);(3) lại ta được :
\(\sqrt{\left(a+b-c\right)^2\left(b+c-a\right)^2\left(c+a-b\right)^2}\le abc\)
\(\Leftrightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)(đpcm)
a,b,c là độ dài 3 cạnh tam giác
CM nếu(a+b)×(b+c)×(c+a)=8abc thì tam giác đó đều
Cho a, b, c là độ dài 3 cạnh của tam giác và (a+b)(b+c)(c+a)=8abc. chứng minh rằng am giác đã cho là tam giác đều
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\)
Tương tự: \(b+c\ge2\sqrt{bc}\) ; \(c+a\ge2\sqrt{ca}\)
Nhân vế với vế:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác đã cho là tam giác đều
Cho a,b,c là độ dài 3 cạnh của một tam giác
CM ab+bc+ca nhỏ hơn hoặc bằng a^2+b^2+c^2<2<ab+bc+ca>
Cho a,b,c là độ dài 3 cạnh tam giác và a nhỏ hơn hoặc bằng b nhỏ hơn hoặc bằng c. CMR (a+b+c)2 nhro hơn hoặc bằng 9
Cho a, b ,c là độ dài 3 cạnh của 1 tam giác.
Chứng minh rằng: abc lớn hơn hoặc bằng (a+b-c)(a+c-b)(b+c-a)
vì a;b;c là độ dài 3 cạnh của 1 tam giác áp dụng bđt tam giác ta có\(\Rightarrow\hept{\begin{cases}a+b>c\Rightarrow a+b-c>0\\a+c>b\Rightarrow a+c-b>0\\b+c>a\Rightarrow b+c-a>0\end{cases}}\)
\(\Rightarrow\sqrt{a+b-c};\sqrt{a+c-b};\sqrt{b+c-a}\)luôn được xác định\(\left(\sqrt{a+b-c}-\sqrt{a+c-b}\right)>=0\Rightarrow a+b-c-2\sqrt{\left(a+b-c\right)\left(a+c-b\right)}+a+c-b\)\(>=0\Rightarrow a+b-c+a+c-b>=2\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\Rightarrow\frac{a+b-c+a+c-b}{2}=\frac{2a}{2}\)
\(=a>=\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\)
tương tự ta có :\(b>=\sqrt{\left(a+b-c\right)\left(b+c-a\right)};c>=\sqrt{\left(a+c-b\right)\left(b+c-a\right)}\)
\(\Rightarrow abc>=\sqrt{\left(a+b-c\right)^2\left(a+c-b\right)^2\left(b+c-a\right)^2}=\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
dấu = xảy ra khi a=b=c
dòng 3 là vì \(\left(\sqrt{a+b-c}-\sqrt{a+c-b}\right)^2>=0\)nhá
Gọi a, b, c là độ dài ba cạnh một tam giác. Cho biết (a + b)(b + c)(c + a) = 8abc. Chứng minh: Tam giác đã cho là tam giác đều
Áp dụng bất đẳng thức Cô - si cho 3 số dương a, b, c
\(a+b\ge2\sqrt{ab}\) ; \(b+c\ge2\sqrt{bc}\); \(c+a\ge\sqrt{ca}\)
Nhân các vế của BĐT \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Dấu " = " xảy ra khi a = b = c => tam giác đó đều