Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen don
Xem chi tiết
Trần Thị Loan
21 tháng 7 2015 lúc 13:31

a;b;c là 3 cạnh của tam giác => a; b; c dương

Với a; b dương ta có:  \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) => a + b \(\ge\) 2. \(\sqrt{ab}\)

Tương tự, b + c \(\ge\) 2.\(\sqrt{bc}\); c + a \(\ge\)2. \(\sqrt{ca}\)

=> (a + b).(b+c).(c+a) \(\ge\)8. \(\sqrt{ab}\).\(\sqrt{bc}\).\(\sqrt{ca}\) = 8.abc 

Dấu = xảy ra khi a = b = c

=> tam giác có 3 cạnh là a; b; c là tam giác đều

nguyen don
Xem chi tiết
Nguyet9ak47
Xem chi tiết
Đinh Đức Hùng
16 tháng 9 2017 lúc 20:43

Vì a:b:c là độ dài  cạnh tam giác nên \(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}\Rightarrow\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}}\)

Áp dụng bđt AM - GM ta có :

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=\frac{2b}{2}=b\)(1)

\(\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\le\frac{a+b-c+c+a-b}{2}=\frac{2a}{2}=a\)(2)

\(\sqrt{\left(b+c-a\right)\left(c+a-b\right)}\le\frac{b+c-a+c+a-b}{2}=\frac{2c}{2}=c\)(3)

Nhân vế với vế của (1); (2);(3) lại ta được :

\(\sqrt{\left(a+b-c\right)^2\left(b+c-a\right)^2\left(c+a-b\right)^2}\le abc\)

\(\Leftrightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)(đpcm)

Ngô Quang Huy
Xem chi tiết
Võ Thạch Đức Tín
5 tháng 12 2015 lúc 11:10

chtt

Ngô Quang Huy
5 tháng 12 2015 lúc 10:23

Cô Loan ơi cứu em, em sắp thi HSG rồi

Khánh Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 2021 lúc 17:20

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\)

Tương tự: \(b+c\ge2\sqrt{bc}\) ; \(c+a\ge2\sqrt{ca}\)

Nhân vế với vế:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác đã cho là tam giác đều

Nguyễn Lê Ngọc Diệp
Xem chi tiết
Dương Quỳnh My
Xem chi tiết
alibaba nguyễn
22 tháng 10 2016 lúc 23:08

Đề sai rồi b

Cao Thanh Nga
Xem chi tiết
Đinh quang hiệp
20 tháng 6 2018 lúc 16:03

vì a;b;c là độ dài 3 cạnh của 1 tam giác áp dụng bđt tam giác ta có\(\Rightarrow\hept{\begin{cases}a+b>c\Rightarrow a+b-c>0\\a+c>b\Rightarrow a+c-b>0\\b+c>a\Rightarrow b+c-a>0\end{cases}}\)

\(\Rightarrow\sqrt{a+b-c};\sqrt{a+c-b};\sqrt{b+c-a}\)luôn được xác định\(\left(\sqrt{a+b-c}-\sqrt{a+c-b}\right)>=0\Rightarrow a+b-c-2\sqrt{\left(a+b-c\right)\left(a+c-b\right)}+a+c-b\)\(>=0\Rightarrow a+b-c+a+c-b>=2\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\Rightarrow\frac{a+b-c+a+c-b}{2}=\frac{2a}{2}\)

\(=a>=\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\)

tương tự ta có :\(b>=\sqrt{\left(a+b-c\right)\left(b+c-a\right)};c>=\sqrt{\left(a+c-b\right)\left(b+c-a\right)}\)

\(\Rightarrow abc>=\sqrt{\left(a+b-c\right)^2\left(a+c-b\right)^2\left(b+c-a\right)^2}=\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)

dấu = xảy ra khi a=b=c

Đinh quang hiệp
20 tháng 6 2018 lúc 16:07

dòng 3 là vì  \(\left(\sqrt{a+b-c}-\sqrt{a+c-b}\right)^2>=0\)nhá

luu thanh huyen
Xem chi tiết
Nguyễn Quốc Việt
16 tháng 10 2017 lúc 20:36

Áp dụng bất đẳng thức Cô - si cho 3 số dương a, b, c

\(a+b\ge2\sqrt{ab}\)    ;  \(b+c\ge2\sqrt{bc}\);   \(c+a\ge\sqrt{ca}\)

Nhân các vế của BĐT \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dấu " = " xảy ra khi a = b = c => tam giác đó đều