Gọi a,b,c là độ dài ba cạnh của một tam giác. Cho biết (a+b)(b+c)(c+a)=8abc. CM: tam giác đã cho là tam giác đều
Gọi a,b,c là độ dài ba cạnh của một tam giác. Cho biết (a+b)(b+c)(c+a)=8abc. CM: tam giác đã cho là tam giác đều bât
Cho a,b,c là độ dài 3 cạnh của một tam giác
Chứng minh :(a+b-c)(b+c-a)(c+a-b) <=(bé hơn hoặc bằng) abc
Cho a,b,c là độ dài 3 cạnh tam giác và a nhỏ hơn hoặc bằng b nhỏ hơn hoặc bằng c. CMR (a+b+c)2 nhro hơn hoặc bằng 9
Cho a ; b; c là độ dài ba cạnh của 1 tam giác . P là nửa chu vi của tam giác đó . CMR :
( p - a )( p - b )( p - c ) <= 1/8abc
Cho a,b,c là độ dài các cạnh của một tam giác. Chứng minh rằng:
a*b+b*c+c*a nhỏ hơn hoặc bằng a^2+b^2+c^2 nhỏ hơn 2*(a*b+b*c+c*a)
Biết a,,b,c là độ dài ba cạnh của một tam giác và 0 nhỏ hơn hoặc bằng t nhỏ hơn hoặc bằng 1 chứng minh rằng :
\(\sqrt{\frac{a}{b+c-a}}+\sqrt{\frac{b}{c+a-b}}+\sqrt{\frac{c}{a+b-c}}\)lớn hơn hoặc bằng \(2\sqrt{t+1}\)
Cho a, b, c là độ dài 3 cạnh của 1 tam giác và \(a^2+b^2\ge5c^2\)
CMR : c là độ dài cạnh bé nhất
Cho một tam giác vuông với cạnh huyền có chiều dài c, độ dài hai cạnh góc vuông lần lượt là a và b \(\left(c>a,b>0\right)\). Từ a và b ta lập 2 hình chữ nhật đều có độ dài hai kích thước là a và b. Chứng minh rằng diện tích của hình vuông cạnh c luôn lớn hơn hoặc bằng tổng diện tích của 2 hình chữ nhật vừa lập được. Tam giác vuông ban đầu cần có thêm điều kiện gì để trường hợp bằng xảy ra?