cho hình thang ABCD(AB//CD).CMR: nếu AC+BC=AD+DB thì ABCD là hình thang cân
cho hình thang abcd(ab//cd).cmr nếu ac+cb=ad+db thì abcd là hinhf thang cân
cho hình thang abcd(ab//cd).cmr nếu ac+cb=ad+db thì abcd là hình thang cân
Giúp em với gập ạ !!
Cho hình thang ABCD(AB||CD). CMR: nếu AC+BC=AD+BD thì hình thang ABCD là hình thang cân
Bài 1: △ABD=△BAC(c−g−c)△ABD=△BAC(c−g−c)
=>AC=BD=>AC=BD
△ACD=△BDC(c−c−c)△ACD=△BDC(c−c−c)
=>ADCˆ=BCDˆ=>ADC^=BCD^
Mà ADCˆ+DABˆ+ABCˆ+BCDˆ=360oADC^+DAB^+ABC^+BCD^=360o
=>2(DABˆ+ADCˆ)=360o=>2(DAB^+ADC^)=360o
=>DABˆ+ADCˆ=180o=>DAB^+ADC^=180o
=>AB//CD=>AB//CD
=>ABCD=>ABCD là hình thang mà có 2 góc ở đáy bằng nhau nên lf thang cân
Bài 4: chắc mấy bạn ở dưới vẽ sai hình :3 -_-
hình vẽ chính xác là ta vẽ được một hình thang cân với AD//BCAD//BC sẽ có được đầy đủ điều kiện đề bài đưa ra
Giải:
△ADB=△DAC△ADB=△DAC (c-c-c)
=>DABˆ=ADCˆ=>DAB^=ADC^
Từ đây chứng minh như câu 1 là =>đpcm )
Cho hình thang ABCD (AB ∥ CD, góc C, D đều nhọn). Chứng minh rằng nếu AC + CB = AD + DB thì
ABCD là hình thang cân.
Cho hình thang ABCD(AB//CD), biết AC+BC=AD+BD. CMR ABCD là hình thang cân
Bn tham khảo tại đây nha:
https://hoc24.vn/cau-hoi/cho-hinh-thang-abcdabcd-cmr-neu-acbcadbd-thi-hinh-thang-abcd-la-hinh-thang-can.88595065587
Cho hình thang ABCD có AB // CD. Chứng minh rằng: Nếu AD+AC=BC+BD thì tứ giác ABCD là hình thang cân
Cho hình thang ABCD (AB//CD) có các góc C, D nhọn. Biết AC + AD = BC+BD. CMR: ABCD là hình thang cân
Cho hình thang ABCD (AB//CD). Chứng minh rằng nếu AD+AC=BC+BD thì tứ giác ABCD là hình thang cân. Giúp mình gấp với.
Cho hình thang ABCD có AB // CD và AB = AD = BC. Chứng minh rằng:
a, DB là tia phân giác của ADC
b, ABCD là hình thang cân
a: Xét ΔABD có AB=AD
nên ΔABD cân tại A
Suy ra: \(\widehat{ABD}=\widehat{ADB}\)
mà \(\widehat{ABD}=\widehat{BDC}\)
nên \(\widehat{ADB}=\widehat{CDB}\)
hay DB là tia phân giác của \(\widehat{ADC}\)